
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Dynamic Partitioning and Additional Branch
Coverage for Test Case Selection
To cite this article: Arnaldo Marulitua Sinaga et al 2019 J. Phys.: Conf. Ser. 1175 012098

View the article online for updates and enhancements.

You may also like
Generalization of deep recurrent optical
flow estimation for particle-image
velocimetry data
Christian Lagemann, Kai Lagemann, Sach
Mukherjee et al.

-

Numerical analysis of the factorization
method for EIT with a piecewise constant
uncertain background
Houssem Haddar and Giovanni Migliorati

-

A meshless method to compute pressure
fields from image velocimetry
Pietro Sperotto, Sandra Pieraccini and
Miguel A Mendez

-

This content was downloaded from IP address 180.241.46.21 on 10/04/2023 at 10:08

https://doi.org/10.1088/1742-6596/1175/1/012098
/article/10.1088/1361-6501/ac73db
/article/10.1088/1361-6501/ac73db
/article/10.1088/1361-6501/ac73db
/article/10.1088/0266-5611/29/6/065009
/article/10.1088/0266-5611/29/6/065009
/article/10.1088/0266-5611/29/6/065009
/article/10.1088/1361-6501/ac70a9
/article/10.1088/1361-6501/ac70a9
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsuSLVhBHJy9AIjtvapWPTE2LsfDXEUchpDtyZp8JhZ421EIuv_NnNsdyCXP-RPjy_S7k3cqSH8SJASZW3Z_x9Acs4BJe5dovdH0LDCMtxuHGmIVooQgIYJ-kNhd_1Alhw1fIB7xSwMl2KkpK52xd7brcLP6pKdPfeEAO9Xhoih7nO4CHWOD0GRhZn3DQy8RoRfjQyHf13YuE1wcYK7Sy4LultLnB-oHqBSEhuLtimV_vtfALoc8JSwi8BmVmYnk79kKffAGNghA_FlmwoOxavkczY0Th4KXlZ0rI3LGjtYIgA&sai=AMfl-YQLK_M_l9Bv54R3Jp5j7Bf4ZQVO1Sqi_FU_1ID5kvkxdUQ-_XJwJp-WjmkNjf_zdiQL0kea-cxqASJwTNg&sig=Cg0ArKJSzHLkh4RiNUZl&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/244/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanners%26utm_campaign%3D244AbstractSubmit

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

1st International Conference on Advance and Scientific Innovation (ICASI)

IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1175/1/012098

1

Dynamic Partitioning and Additional Branch Coverage for

Test Case Selection

Arnaldo Marulitua Sinaga , Arie Satia Dharma, Oscar Hutajulu, Anita Ginting

and Gustina Simanjuntak

Faculty of Informatics and Electrical Engineering, Institut Teknologi Del, Toba

Samosir 22381, Indonesia

Abstract. Good test cases are those test case with high failure detecting capability. The

effectiveness of testing is relied on the test case selection process. The earlier good test cases

being selected, the higher the effectiveness of testing. Partitioning is one of the method to

improve the effectiveness of test case selection. Dynamic Partitioning is method that has been

proved empirically can improve the effectiveness of random selection. This method is

proposed based on the intuition that a successful test case has high probability in detecting

failure in the next execution. On the other hand, Addition Branch Coverage method has been

proposed to improve the effectiveness of testing. It selects test case if it can add the covered

branch during test execution. The empirical results show that the Additional Branch Coverage

is the best method compare with othe coverage-based method. In this research, the combination

of those two methods, Dynamic Partitioning and Additional Branch coverage is proposed with

the hypothesis that this combination will combine the advantages of those two methods, and

hence produce better method. The effectiveness of the proposed method has been investigated

empirically by comparing it with the Random Testing, Dynamic Partitioning and Additional

Branch Coverage. The Random Testing usually used as the benchmark in software testing

research. The results show that the new method performed more effective that all other studied

methods. The combination of Dynamic Partitioning and Additional Branch Coverage improve

the effectiveness of test case selection in term of the number of executed test cases to detect all

existing failures.

1. Introduction

Software testing is the process of verification of the quality of the software product [1]. This makes

software testing has a very important role in software development lifecycle. Software testing is aimed

to detect all failures in a software product, and hence they can be fixed sooner before deployed

[2,3,4]. However, software testing can be very 5657costly if the test case selection is ineffective and

inefficient. It is important to select good test cases earlier to increase the fault detection capability of

testing process. Good test case is test cases that has high probability in detecting failure [2,8,11]. The

earlier a failure detected the sooner fault can be fixed, thus the cost of testing can be reduced.

Therefore, it is important to find effective test case selection strategy. Cai et al [7] introduced Dynamic

Partitioning strategy for test case selection. This strategy selects test cases by incorporating online

feedback information from testing process. The empirical research show that the Dynamic Partitioning

outperformed Random Testing significantly [7,8]. Dynamic partitioning strategy is based on the

intuition that the test cases that successfully detected failure previously have higher probability to

1st International Conference on Advance and Scientific Innovation (ICASI)

IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1175/1/012098

2

detect failure in the next execution [7]. The good test cases are partitioned separately with the poor test

cases. The test cases’ membership updated dynamically based on the last execution result.

On the other research Rothermel et al. [9] conducted investigation on the test case prioritization by

employing coverage information of test cases. They found that the strategy with branch coverage

information performed better than all other coverage information. They than proposed new strategy by

applying Additional method by using branch coverage information named Additional Branch

Coverage. This method performed the best among the studied methods [9]. In Additional Branch

Coverage, the selected test case contributes to the completenes of branch coverage. A test case will

only be selected if it touch one or more branch when being executed.

Hypothetically, the combination of these two methods, Dynamic Partitioning and Additional

Branch Coverage, produce a method with higher fault-detection capability by combining the

advantages of those two methods. This research investigates this hypotisis empirically. The

effectiveness of the proposed method is measured in term of the number of test cases executed to

detect all of existing failure

2. Dynamic Partitioning

As explained in Section 1, Dynamic Partitioning partitioned test cases based on the previous execution

results. If a test case previously detects a failure that it is categorized as good test cases, otherwise it is

categorized as poor test case. This approach partitions all test cases into three classes. First category is

Poor that consists of all test cases that did not detect failure previously. Second category is Fair that

consists of all test cases that have not been executed yet. Third category is Good that consists of test

cases that detect failure previously. In the testing process, test cases from Good partition has the

highest prioritization to be selected, followed by Fair and the Poor comes as the last. The lower

prioritized test cases will only be selected if the higher prioritized partition has been empty. An

advanced research by using this approach has been conducted by Zhou et al. [8], that is by proposing

five versions of Dynamic Partitioning: Dynamic Partitioning with Fixed Membership (DPFM),

Dynamic Partitioning with One-step Varying Membership (DP1S), Dynamic Partitioning with Two-

step Varying Membership (DP2S), Dynamic Partitioning with No Upgrade (DPNU), and Dynamic

Partitioning that Returns to Poor (DPRP). The empirical results show that DP1S is the best method.

Therefore, in this research we only consider DP1S as the Dynamic Partitioning method. The

membership of test case with DP1S is defined by employing the information from testing process. If a

test case from Good partition did not detect a failure in the last execution, then its membership is

downgraded one step lower to Fair, on the other hand if a test case from Fair detected a failure in the

last execution, then its membership upgraded one level to Good [8].

3. Additional Branch Coverage

Branch is link inter-node which is associated with the branching of true and false of a decision node

[10]. Branch Coverage method is proposed to ensure that all brances in the program code of software

under test have been executed in the testing process. Branch Coverage is one of test coverage criteria

with each of the branch has been touched by the execution of test cases at least once. This coverage

method is also known as Decision Coverage [4]. Rothermel [9] introduced and investigated several

prioritization including Statement Coverage and Branch Coverage. The results show that Branch

Coverage performed better than Statement Coverage [9]. Rothermel et al. [9] also proposed Additional

method to those prioritization technique. In the Additional method, a test case is prioritized higher

when it touches more coverage elements. As an illustration, a program under test P has 5 branches in

its program code: B1, B2, B3, B4, and B 5. The previous execution indicates that B1, B2, and B3 have

been executed. Test case Ta touches B1 and B3, whereas test case Tb touches B3 and B4. Hence test case

Tb is prioritized higher than Ta since Tb contributes one branch coverage whereas Ta with no

contribution.

1st International Conference on Advance and Scientific Innovation (ICASI)

IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1175/1/012098

3

4. Dynamic Partitioning with Additional Branch Coverage

As has been explained in Section 1, this research proposes a new method that combine Dynamic

Partitioning and Additional Branch Coverage named Dynamic Partitioning with Additional Branch

Coverage. This combination is aimed to obtained more effective test case selection method by

combining the advantages of the two combined methods. The Additional Branch Coverage is applied

to defined the partition of test suite. Each partition contains at least a set of test cases that resulted

from one round of Additional Branch Coverage Method. The algorithm of this partition technique is as

follow:

1. Select a test case from test suite-set randomly, remove it from test suite-set and put it into

active partition

2. Execute it into program under test and recorded the branch coverage into CoverageLog

3. If all branches in the CoverageLog have been covered and all test suite-set empty (all test

cases have been partitioned) then stop; If all branches in the CoverageLog have been covered

but test suite-set is not empty then change the active partition and go to Step 1; otherwise go to

Step 1.

In this research, the number of partition is set to 4. This is defined arbitrarily by following previous

research in partition [11].

The partitioned test suite then goes to the testing process that apply Dynamic Partitioning method.

As explained in the previous section, the Dynamic Partitioning algorithm used in this research is

DP1S. Like in DP1S, each partition is divided into three partitions named Good, Fair, and Poor and

each of them has Used and Unused part. All test cases that have been executed are stored in the Used

part whereas the test cases that have not been executed are stored in the Unused part. At the beginning

all test cases in each partition are stored in Unused part of Fair of each correspondent partition. The

testing process with this algorithm is as follows:

1. Select a partition randomly

2. Select a test case randomly from the the Unused part of Good set of the selected partition (If

Good set is empty then from Fair set; if Fair set is also empty then from Poor set).

3. Execute the selected test case and move it to Used part of its originated set.

4. If a failure is detected, a correspondent fault is removed from program under test (new

version). All test cases in the Used part are moved to their Unused part accordingly (sampling

without replacement). If there are still remaining faults in program under test then go to Step

1.

5. If all failures have been detected and all faults have been removed, the stop; otherwise adjust

the membership of test case as follows:

a. If the executed test case is from Good set, it will be moved back to Good set only if it

detects a failure in the last execution, otherwise it will be degraded one step to Fair

set.

b. If the executed test case is from Fair set, it will be upgraded one step to Good set only

if it detects a failure in the last execution, otherwise it will be degraded one step to

Poor set.

c. If the executed test case is from Poor set, it will be upgraded one step to Fair set only

if it detects a failure in the last execution, otherwise it will be remained Poor set.

5. The Experiment

In this research, Space is the program under test in the experiments. Space is a C program that

frequently used in software testing research [7,8,9,11]. The instruments of Space are downloaded from

Software Infrastructure Repository [1,16], that consists of 13,585 test cases adn 6,199 lines of code.

Folowing Zhou et al. [8], the number of faults seeded into Space is 34 faults and the way the faults

being seeded into the program is similar with Zhou et al. [8]. In order to enhance the validity of this

experiments, the execution of all studied methods is conducted for 500 trials. There are 5 methods

implemented in this experiments:

1st International Conference on Advance and Scientific Innovation (ICASI)

IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1175/1/012098

4

1. Random Testing (RT), the most simple testing strategy. All test cases have the uniform probability

to be selected. This method usually used as the benchmark in software testing research.

2. Random Partitioning (RP), all test cases are partitioned into four classes randomly.

3. Dynamic Partitioning (DP), test cases are selected by using Dynamic Partitioning method

particularly DP1S.

4. Additional Branch Coverage (ABC), all test cases are partitioned by using Additional Branch

algorithm. The test cases are selected from the partitions randomly.

5. Dynamic Partitioning with Additional Branch Coverage (DP-ABC), combining the Dynamic

Partitioning and Additional Branch Coverage. All test cases are partitioned into four classes by

using Additional Branch Coverage. The partition resulted from the execution of this algorithm is

as follows:

• Partition #1 consists of 3418 test cases

• Partition #2 consists of 3434 test cases

• Partition #3 consists of 3343 test cases

• Partition #4 consists of 3300 test cases

The Dynamic Partitioning is implemented into each of the partition for test case selection and

membership adjustment.

The effectiveness of each studied method is measured by using F-measure. F-measure indicates the

number of test cases applied to detect the first failure in the testing process. The lower F-measure, the

more effective the method being investigated [8,11].

6. Experiment Result and Discussion

The results of the experiments with Space as program under test are presented in Table 1. Those

results are obtained from the 500 trials of each studied methods. Table 1 provides a simple statistical

analysis of the 500 trials results.

Table 1. The Experiment results with Space
 Methods

 RT RP DP ABP DP- ABP

Avg 1600.44 837.93 756.87 832.00 735.56

Max 5951.00 2937.00 2576.00 2266.00 2266.00

Min 227.00 169.00 124.00 110.00 111.00

Med 1074.50 739.50 655.00 687.00 696.00

Std. Dev 882.73 470.01 416.80 498.75 342.28

The results show all methods with partitioning and coverage information outperformed the RT in

all statistical aspects. For the average, DP-ABC comes as the best method. It executes less number of

test cases to detect all failures than all other methods. The average F-measure is 735.55, with the

saving of 54.04 % compared to RT. DP-ABC also improves the two original methods: DP with the

gain of 2.82 % and the ABC with the gain of 11.59 %. For Maximum, DP-ABC and ABC come as the

best method, followed by DP, RP and RT respectively. The same result is indicated by Minimum, DP-

ABC and ABC gain almost the same result and come as the best. The DP comes as the best with

Median followed by ABC and DP-ABC. The results also indicate that DP-ABC is the most stable

method among all studied methods. It has the lowest standard deviation that is 342.28 followed by DP,

ABC, RP and RT.

This experimental result has also been analysed more detail using further statistical approaches.

The Analysis of Variance (ANOVA) is conducted to examine whether or not the studied methods are

all equal [13]. The p-value returned from ANOVA test is less than 0.001, which indicated that the

compared methods are significantly different. Further analysis is conducted to compare the

performance of the proposed DP-ABC with all other studied methods by using t-test. The t-test results

show that DP-ABC outperformed ABC, RP and RT significantly with the p-value returned from the

test is smaller than 0.01. However, the p-value of the t-test of DP-ABC and DP is 0.38, indicates they

1st International Conference on Advance and Scientific Innovation (ICASI)

IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1175/1/012098

5

are not significantly different. This result indicates that the advantage of DP contributes more than

ABC to the effectiveness of DP-ABC. This finding need to be investigated furthermore, since in this

experiment the influence of particular method is not investigated. Further investigation also needed in

order to increase the validity of this experiment, that is by applying more program under test with

larger in size and complexity and also with larger test suite.

7. Conclusion
This research proposes a test case selection method that combine the Dynamic Partitioning and the

Additional Branch Coverage with the intention of improving the effectiveness of software testing by

combining the advantages of the two methods. The experimental results show that the new method

performed better than the two originated methods. The new method named as Dynamic Partitioning

with Additional Branch Coverage (DP-ABC). DP-ABC applied less test cases to detect all existing

faults in the program under test. The statistical analysis indicate that DP-ABC has significantly

outperformed the other methods except Dynamic Partitioning. The DP-ABC can reach up to more than

50% saving compare to Random Testing. In term of stability, the DP-ABC comes as the most stable

methods. This finding agree with the hypotesis in this research.

However, a further investigation is needed to find out how the new methods improve the originated

methods Dynamic Partitioning and Additional Branch Coverage. Future research with more program

under test and larger test suites is needed.

Acknowledgments

This work was supported in part of IT Del Research Grant

References
[1] Naik, Kshirasagar and Tripathy, Priyadarshi. Software Testing and Quality Assurance-Thory

and Practice. New Jersey: Wiley. 2008

[2] Bentley, John E., Bank, Wachovia, and Charlotte, NC. “Software Testing Fundamentals-

Concepts, Roles, and Terminology” Kajian, 2003.

[3] Ahamed, Riaz S. S., “Studying the Feasibility and Importance of Software Testing: An

Analysis”, International Journal of Engineering Science and Technology, 2009, vol. 1, no. 3,

pp. 119-128.

[4] Myers, G. (2012). The Art of Software Testing 3rd. New Jersey: John Wiley & Sons, Inc.

[5] Cem Kaner, “What is a Good Test?” Kajian, Department of Computer Science, Florida

Institute of Technology, Florida, 2003.

[6] Pressman, Roger S. Software Engineering-A Proactitioner’s Approach. New York: McGraw-

Hill. 2001.

[7] K. -Y. Cai, T. Jing, and C. G. Bai, “Partition testing with dynamic partitioning,” in Proceedings

of the 29th Annual International Computer Software and Applications Conference (COMPSAC

2005), vol. 2. IEEE Computer Society Press, July 2005, pp. 113-116.

[8] Z. Q. Zhou, A. Sinaga, L. Zhao, W. Susilo, and K. -Y. Cai, “Improving software testing cost-

effectiveness through dynamic partitioning,” in Preceeding of the 9th International Conference

on Quality Software (QSIC’09). IEEE Computer Society Press, 2009, pp. 249-258.

[9] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold, “Prioritizing Test cases For Regression

Testing”. IEEE Transaction on Software Engineering, vol. 27, no. 10, October, 2001, pages

929-948.

[10] Wong, W. Eric. ”Controlflow-based Coverage Criteria”, Department of Computer Science, The

University of Texas, Dallas, Texas.

[11] A. Sinaga, “On Feedback-Based Software Testing,” Doctor of Philosophy Thesis, Computer

Science Department, Univerity of Wollongong, Wollongong, Australia, May 2013.

[12] Software-artifact Infrastructure Repository. http://sir.unl.edu. accessed at 25th November 2015.

1st International Conference on Advance and Scientific Innovation (ICASI)

IOP Conf. Series: Journal of Physics: Conf. Series 1175 (2019) 012098

IOP Publishing

doi:10.1088/1742-6596/1175/1/012098

6

[13] Sawyer, S. F. (2009). Analysis of variance: the fundamental concepts. Journal of Manual &

Manipulative Therapy, 17(2), 27E-38E.

