05 internasional conference
ICEEI

by Arlinta C Barus

Submission date: 22-Mar-2019 01:41PM (UT C+0700)
Submission ID: 1097747290

File name: 05_internasional_conference_ICEEl.pdf (536.64K)
Word count: 3912

Character count: 19501

The 5th International Conference on Electrical Engineering and Informatics 2015
August 10-11, 2015, Bali, Indonesia

White Box Testing Tool Prototype Development

Arlinta Christy Barus, Dian Irggfutr: Hutasoit, Joel Hunter Siringoringo. Yusfi Apriyanti Siahaan
Informatics Engineering Study Program
Del Institute of Technology
JI. Sisingamangaraja, Kec. Laguboti, Kab. Tobasa, Sumatera Utara, Indonesia
arlinta(@del.ac.id. dian.hutasoit@del.ac.id, hunterharada/@gmail.com, yusfisiahaan@gmail.com

Abstract—nowadays, software testing is viewed as m
important phase in software engineering life cycle as it aims fo
improve the quality of software under development. Due to
limited software testing tools available for free, many developers
cannot do a comprehensive testing to the software under
development before launching the software. For this reason, this
research aims to provide a prototype of a software testing tool
that can be used as an initial base model for further development.
The tool implements white box testing method that means the
testing explores source codes of software under test to find the
errors inside. We focus on one of data flow coverage techniques
known as all p-uses cm'er:tm'hc tool is able to calculate the all
p-uses coverage percentage of the software under testing.

Keywords—software testing; white box testing; data flow
coverage; all p-uses

I8 INTRODUCTION

Software testing 1s a process of executing a program with
the intent inding errors [1]. The activity can spend about
50%-80% of the total cost of software development [2]. It is
indeed an important activity that should be conducted by
developers before the software is ready to launch or deploy. It
helps to ensure that software under development meets the
customers’ requirements. In other words, software testing
facilitates the improvement of the quality of the software under
development.

Prior to this research, a survey was conducted to a batch of
Del Institute’s alumnae that have been working as IT
practitioners, aiming to find out how well software testing
techniques had been used in the routine software development
industry, particularly in Indonesia. Approximately 90% of the
respondents answered that the techniques were rarely used due
to their limited knowledge of software testing and limited
availability of free software testing tools. Mostly, the free tools
are just automating the execution of the software under test
(such as JUnit [13] and Selenium [14]) whilst the test cases and
the expected output have to be provided manually by testers
and then pass them as the inputs to the tools.

Therefore. this research focusses on building a prototype of
a software testing tool that implements one of software testing
techniques. Its main function is to calculate the all p-uses
coverage on software tested. In the future, it is then expected to
be expanded as a complete tool with having more features and
bcta interface and performance.

The rest of the paper is organized as follow: Section II
addresses the literature study on varigi§ related software
testing and Section I presents the analysis, design and
implementation of the prototypelglihe testing of the prototype
itself is discussed in Section IV. The related work is discussed

in Section V and then 1s concluded in the last Section. Section
VL

II. LITERATURE STUDY
1

A, White Box Testing

White box testing, also known as code-based testing or
glass box testing or structural testing, 15 one of €& most
important software festing techniques. It generates test cases
based on the source and internal workings of the source.
It is very effective m validating design. decision. assumptions
and finding errors program in software [4. 11, 12].

In white box testing, testing aims to check which parts of
the source program that have been and have not been touched
by a series of executed test cases. By knowing this information,
testers may be able to control the selection of test case
execution to make sure all parts are covered. There gl two
types of coverage criterion that can be approached i.e. Control
Flow Coverage and Data Flow Coverage (9. 10].

B. Conirol Flow Coverage

Control flow criterion measures the flow of control between
statements and sequences of statements [5, 9. 10]. 'c are
several different techniques using this criterion such as
Statement Coverage (SC). Condition Coverage (CC), Decision
Coverage (DC), Condition/Decision Coverage (C/DC).
Modified Condition/Decision Coverage (MC/DC), and
Mul Condition Coverage (M-CC). The brief description of
each be seen in Table .

TABLE I. CONTROL FLOW CRITERIA

_a C|€ |€ | €

MC | M-

Coverage Criteria @Jc [p [cp
' /DC | cC

Every statement in the program
has been invoked at least once v

Every condition in a decision in
the program has taken all possible o | A ol
outcomes at least once

Every decision in the program has
taken all possible outcomes at VN Y A
least once

Every condition in a decision has
been shown to independently 3 A
affect that decision’s outcome

Every combination of condition
outcomes within a decision has \
been invoked at least once

978-1-4673-7319-7/15/$31.00 ©2015 IEEE

417

C. a?a.ra Flow Coverage

Data flow criteria measures the flow of data between
variable assignments and references to the variables [5.8]. In
data flow coverage testing, three types of data usage are
defined as followings:

1. Define (def))
Giving a value for variable. and includes passing values
into parameters, e.g. x=1

2. Computational-use (c-use)

Using variable’s value in a predicate/decision, e.g. 1f

(=)
3. Predicate-use (p-use)
Using variable’s value for computation. e.g. y=x+1

Testers need to determine the data usage type of each
variable in the source code of software under test and then
followed by determining path from each variable.

Data flow testing also has six criteria explained as follows
[6]:
1. 8 Definitions
For each variable x and each node i, in which x has a
global definition in node i. selects a complete path which
includes a definition clear path from node 1 to
e Nodej having a global c-use of x, or
EF dge (. k) having a p-use of x
2. All c-uses
For each variable x and each node i, in which x has a
global definition in node i. selects a complete paths which
includes a definition clear path from node 1 to all nodes |
such that there is a global c-use of x in j.
3. @ p-uses
For each variable x and each node 1, in which x has a
global definition in node i. selects a complete paths which
includes a definition clear path from node i to all edges (j.
k) in which there is a p-use of x (J. k).
4. All p-uses/some c-uses
This criterion 1s identical to the all-p-uses criterion except
when a variable x has no p-use. If x has no p-use, then this
criterion reduces to the some-c-uses criterion.
Some-c-uses: For each variable x and each node i. in
which x has a global definition in node 1, selects complete
paths which include def-clear paths from node i to some
nodes j such that there is a global c-use of x in j.
All c-uses/som&p-uses
This criterion 1s identical to the all-c-uses criterion except
when a variable x has no c-use. If x has no global c-use.
then this criterion reduces to the some-p-uses criterion.
Some-p-uses: For each variable x and each node i, in
which x has a global definition in node 1, selects complete
paths which include def-clear paths from node i to some
edges (). k) in which there is a p-use of x on (). k).
6. All uses
This criterion produces a set of paths due to the all-p-uses
criterion and the all-c-uses criterion. @
43

In this tool, the criterion which is used in the tool is all p-
uses criterion.

th

D, All P-Uses Coverage Percentage Caleulation

The formula used to calculate all p-uses coverage percentage is
shown in formula below.

¥ All p-uses paths passed by test case

% Coverage x 100%

3 All p-uses path

Coverage percentage of a test case can be known by
dividing > all p-uses paths which are passed by test case with
3 all p-uses path in program.

The example of source code of program P that will be used
to illustrate the calculation of all p-uses coverage percentage is

ayed in Fig. 1 below.

#include <stdio.h>
#include <stdlib.hs
int main(int a, int b)
{
ntf ("Input the value of a :
scanf ("%d", &a);
printf ("Input the walue of b : ");
scanf ("%d4", &b);
if (a>0 && b>0)//Node-2 (N2)

a=b+2; //NERR-3 (13)

"y ;//HNode-1(N1)

printf ("The walue of a = %d ", a);
printf ("\@"):

Jelse if (a>0 || b=0)//Node-4(N4)

{ a=b-2;//Node-5 (N5)

printf ("The value of a = ¥d ", a);
princf ("\n");}
else {
a=0; //Node-6 (Ns)
printf ("The value of a = %d ", a);
printf: ("Na"};
b=0;
printf ("The value of b = 8d ", b);

printf ("Finish");//Node-7(N7)
system ("pause");}

Fig 1. The example of source codes

The control flow graph from source code program P is drawn
in Fig. 2 below.

N
T
LH
g 4
N3 (™
| K o
N e
¥
- L

Fig 2. Control Flow Criteria

The first step to calculate all p-uses coverage percentage is
determining possible paths of in program P. Then, next is to
determine all p-uses variables.

Thus, ba@on the program P, all possible paths are as follows:
¢ NI-N2-N3-N7
e NI-N2-N4-N5-N7

s NI-N2-N4-No6-N7

Definition variable in the program are as follows:
Variable ain N1

Variable b in N1

Variable a in N3

Variable a in N5

Variable a in N6

Variable b in N6

P-use variable in the program are as follows:
e Variable a in edge N2-N3

Variable b in edge N2-N3

Variable a in edge N2-N4

Variable b in edge N2-N4

Variable a in edge N4-N5

Variable b in edge N4-N5

Variable a in edge N4-N6

Variable b in edge N4-N6

From the definition and p-use variable above, we can
determine all p-use variables as follows:

e Variable a in Node 1 (as the last definition in Node 1,
and as p-use in edge N2-N3)

e Variable a in Node 1 (as the last definition in Node 1,
and as p-use in edge N2-N4)

e Variable a in Node 1 (as the last definition in Node 1,
and as p-use in edge N4-N3)

e Variable a in Node 1 (as the last definition in Node 1.
and as p-use in edge N4-N6)

e Variable b in Node 1 (as the last definition in Node 1.
and as p-use in edge N2-N3)

e Variable b in Node 1 (as the last definition in Node 1,
and as p-use in edge N2-N4)

e Variable a in Node 1 (as the last definition in Node 1,
and as p-use in edge N4-N5)

e Variable a in Node 1 (as the last definition in Node 1,

and as p-use in edge N4-N6)

And full paths of the all p-use variables in the program are as
follows:

e Nodel :a— NI-N2-N3-N7 , N1-N2-N4-N5-N7 .
NI-N2-N4-N6-N7
Node 1 : b — NI-N2-N3-N7 ., N1-N2-N4-N5-N7 .,
@N2—N4—N6—N7
Node 2 :
Node 3 :
Node 4 :
Node 5 :
Node 6 :
Node 7 -

From the two all p-uses variables above. we suppose that a test
case has variable @ and variable b with values 0 and 1
respectively. The execution of the testEEBe will pass the first
path which is N1-N2-N4-N5-N7, out of the three all p-uses

418

paths. So. the all p-uses coverage for the first test case is = 1/3
*100% = 33.3 %.

Next, suppose the secondZ8st case has values 0 for both
variable a variable b, The execution of the fest case will
pass the second path which 1s NI-N2-N4-N6-N7. The
cumulative all p-uses coverage (of first and the second test
cases) is = 2/3 * 100% = 66.67 %.

Suppose the last test case has variable a and variable b with
values 5 and 6 respectively. The test case will pass the last path
that has not been executed by previous test cases which 1s N1-
N2-N3-N7. The calculation of cumulative all p-uses coverage
percentage became 3/3 * 100% = 100 %. Thus, we can say that
the three test cases have achieved 100% of all p-uses coverage.
We also can conclude that the program needs at least three test
cases to reach 100% of all p-use coverage.

The resume of the caleulation can be seen as Table II follows:

TABLE II. ALL P-USES COVERAGE PERCENTAGE
CALCULATION

No | Test Test Case Path Coverage
Case
1 a=0, N1-N2-N4-N5-N7 1/3 * 100% = 33.33%
b=1
2 a=0, N1-N2-N4-N6-N7 2/3 * 100% = 66.67%
b=0 accumulation from
previous test case,
3 a=3, N1-N2-N3-N7 3/3 * 100% = 100%
b=6 accumulation from
previous fest case.
III. ANALYSIS, DESIGN, AND IMPLEMENTATION

Based on the calculation of all p-uses coverage. the features
of the tool can be described as follows:
1. Calculating coverage feature
This feature calculates the all p-uses coverage percentage
of the program tested.
Resetting feature
This feature resets the calculation of all p-use coverage
percentage thus the calculation is not accumulated with the
previous calculation.
Simplifying looping path feature
This feature simplifies the test case path having some
looping node caused by ‘while” program.
Finding node of source code of program
This feature finds the node of source code of program
based on test case inputted by tester.
The business processes of the tool to calculate the all p-uses
coverage sequentially are as follows (as depicted by Fig. 3):

Tool reads the program properties inputted by tester. The
properties are nodes, paths. definition variables and the
node, p-uses variables and the edges.

Tool searches global definition variables in every node.

Tool retrieves p-use from variable that has global
definition.

Tool determines definition clear path of all global definition
variables to all of p-use variables.

Tool determines path of all p-uses variables.

Tool reads test case paths inputted by tester

Tool determines whether the path passed by test case 1s all
p-uses path or not.

Tool calculates the percentage of all p-uses coverage.

Tool shows the percentage of all p-uses coverage.

o—=Q

Irput test case
=pmn

T

e

Tester

Retrieaing p-use
fromn varstie
that a5 g ctal

i

Reading the
progam
B

Searchang globsl
defrabion vanables
i #vbry node

Determining All p-uses

Tool

Caleulating Coverage

Fig 3. The flow of actions inside the tool

After analyzing and designing the tool, the main form tool that

-

| &4 CalculatingCoverage = B3 2
ALL P-USE COVERAGE PERCENTAGE

TEstisa e Browse File |

'Y

Paths Passed 5
LI

Percentape (%) | Reset Calculate
Back
Copyright + TA-TI08 : Dian, Joul. Yesh

Fig 5. All p-use coverage Percentage Form

The tool was developed using Java Programming language.
All of properties inputted by tester are processed in List, and
for all p-uses coverage calculation, the tester must modify the
program to produce paths which are passed by test case
inputted to the program. All the test case paths are saved in a
text file as the following:

Node’s value +'-'+ Node’s value + *-’+ Node’s value +...

which node’s value = 1-2-3-4

IV. TESTING
In order to test the tool, we provided three small programs as
the programs under test. as followings:

is shown to tester is in Fig. 4 below: 1. If Program o
P T —— - ——— e B0 A Java program that has only one condition.
@ ALL P-USE COVERAGE 2. Nested If Program
o N A C-program that has a nested condition enclosed.
S i e S e 3. Combination of If and While Program
W P > A Java program having one condition and one while
g (looping).
frepp— L The tool was tested using hardware with the specification
:‘f"m A which is shown in Table I1I below:
(I P |
lpmialine] i | TABLE III. HARDWARE SPECIFICATION
i - . j| Specification Type
- o) | aipiue | Processor Intel® Pentium® CPU P6300 @ 2.27
[= Swaesh Ja P-lses GHz
J [coaae corase | Memory 3.00 GB
_ - = i System type 32-bit Operating System
Fig 4. Developed Tool Main Form Operaling System Windows 7

After generating all p-use, next the tester can calculate the all
p-uses coverage as is shown in the following Fig. 5:

The steps to calculate the all p-uses coverage by using the
developed tool is shown in the following Fig. 6:

420

i

Making i Detesirs e
1 that the pragram the path of he -:‘-.ouqq?nd
will be tested rode PrCsran node ies odels)

!

i Modifyirg the o
& m‘:g Hurring e program to D.::':’"”’“ ¥
£ - seogram procuce all pats e
.! jpassad by las1 cas
/
y,
{ Yes
another
ol cave? Firigh

Fig 6. Calculation Steps

One of the testing scenarios to calculate the all p-uses
coverage can be seen in Table IV below:

TABLE IV. CALCULATE COVERAGE TESTING SCENARIO

Test Case Calculate Coverage testing
Purpose to verify whether the tool can calculate the all p-
uses coverage percentage of the program tested.
Description | if the testing is successful, the all p-uses coverage
percentage is calculated. The calculation is
accumulated with the previous coverage
percentage calculation.
Pre- - All p-uses paths have been generated by tool.
condition - Input file con!ail.ling all paths passed by test case
has been determined by tester.
Test Scenario
1. Tester clicked the Calculate Coverage button at the main
form.
2. Tool showed Calculating Coverage form.
3. Tester clicked Browse File button.
4. Tester chose the file input location.
5. Tester clicked Calculate button.

6. Tool showed the all p-uses coverage percentage calculation.

P

back to test scenario step 3.
8. If tester wants to back to main form, the tester must click

If tester wants to retest the calculation by adding other paths,

text file coverage was coverage was
inputted still 66,67% still 66.67%
before. because the paths | because the
Text file inputted were paths inputted
contained: same. were same.
1-2-4-6-7
1-2-3-7
Text file At the paths At the paths Accepted
contained: Passed text area, | Passed text
1-2-4-5-7 the tool showed: | area, the tool
N1-N2-N4-N5- showed:
N7 NI1-N2-N4-
N3-N7
and the
calculation of all | and the
p-uses coverage | calculation of
became 100%. all p-uses
cm-'erage
became 100%.
Case and Test Result (Normal Data)

Input Data | Expected Result Observation Conclusion
No input. Tool neither Tool neither Accepted
calculated nor calculated nor

showed the showed the

percentage percentage

calculation. calculation.
doc file Tool neither Tool neither Accepted
contained : | calculated nor calculated nor
1-2-4-6-7 showed the showed the
1-2-3-7 percentage percentage

caleulation. caleulation.
Empty text | Tool neither Tool neither Accepted
file calculated nor calculated nor

showed the showed the

percentage percentage

calculation. calculation.

Note

If the abnormal data inputted to the tool, the tool did not calculate
the coverage percentage

The results of the testing of the tools can be described in Table

Back button M below:
9. If tester wants to reset the calculation, the tester must click TABLEV. TESTING RESULT
Reset button and then back to step 3. Test Case Test Description
The Result Evaluation Criteria Result
Tool successfully caleulated the all p-uses coverage percentage. Add Node Passed | Tool successfully saved all nodes
Case and Test Result (Normal Data) based on the value mputted by tester.
Input Data | Expected Result | Observation | Conclusion Create Path Passed | Tool successfully saved all node
Text file At the paths At the paths Accepted which will create path inputted by
contained: Passed text area, | Passed text ‘t“"‘[” ;
1-2-4-6-7 EBoo! showed: | area, the tool Add Path Passed | Tool successfully saved path inputted
1-2:3-7 N1-N2-N4-N6- | §EBwed: by tester. ,
N7 N1-N2-N4- Reset Path Passed l'ool successfully reset a path inputted
N1-N2-N3-N7 N6-N7 by tester.

NI1-N2-N3-N7 Add Passed Tool successfully saved all definition
and the Definition variables and the node of them.
calculation of all | and the Add P-use Passed | Tool successfully saved all of p-use
p-uses coverage calculation of vanables and the edge of them.
was 60.67%. all p-uses Generate All Passed | Tool successfully generated all of all

coverage was P-uses p-uses paths based on properties

06,67%. inputied tester to the tool.

The same The all p-uses The all p-uses Accepted Calculate Passed | Tool successfully calculated the all p-

421

Test Case Test Description
Result
Coverage uses coverage percentage
Reset Passed | Tool successfully reset the calculation
of all p-uses coverage percentage

V. RELATED WORK

There has been a similar k done by Purdue University

[15]. They built a tool for data flow cm&gc testing called

ATAC (Automatic Test Analysis for C). ATAC is a tool for

evaluating test set completeness based on data flow coverage

measures. [t allows the tester to create new tests intended
improve coverage by examining code which is uncovered. It is

currently implemented for UNIX for programs written in C

language [16]. The differences between ATAC and our tool

are as follows:

1. ATAC supports testing for C programs but our tool
supports testing for Java and C programs.

2. [Bhe data flow coverage criteria which is used in ATAC is
based on the coverage criteria definitions of Rapps and
Wevyuker [16] 1.e. blocks, decisions, definitions, p-uses, c-
uses, all-uses, and du-paths but ours focuses only on all p-
uses.

3. ATAC works on Linux or Unix machines but ours can
work on both Linux/Unix and Windows machines.

4. ATAC is a command line program whereas ours is a
GUI-based tool.

VI. CONCLUSION

At the end of the research, it is concluded that the tool has
already been able to successfully generate all of all p-u.
paths, and then calculate and show the all p-uses coverage e of
test cases that are entered as the inputs of the software under
test.

The limitation of the tool is that prior to calculating the
percentage. the tester must input properties of the software
under test to the tool, such as nodes, paths, definition variables
and the node, p-uses variables and the edges. This model of
tool may force the prospective users of the tool to have
knowledge about how to define the control flow graph
including nodes, edges, and the usage types of the variables
exist in the software under test.

In the future. it is worthy to expand the research by
improving the tool so that the tool may be able to accept

422

18

source codes of the software under test and gﬂl of test cases
as the inputs, and automatically calculate the all p-uses
coverage of the test cases. With these full features, the tool
will definitely assist testers to do white box testing using all p-
uses coverage as the criterion. Furthermore, it will be a more
powerful testing tool if it has more coverage criteria included
in the features.

REFERENCES

[1] G. J. Myers. “The Art of Software Testing”. Johm Wiley and Sons,
LW edition, 2004

[2] Collofello. J. 8. dan Woodfield. S. N. “Evaluating the effectiveness of
reliability-assurance techniques™. Jowrnal Svstem and Software. 1ol 9,
No. 3, Hal. 191-195, 1989,

[3] PAtao Pan, “Software Testing”. Camiege Mellon University, 1999.

[4] Mohd. Ehmer Khan, “Different Approaches to White Box Testing
Technique for Finding Errors”. A/l Musanna College of Technology,
mmmre of Oman, in press.

[5] Kelly J. Hayhurst, Dan S. Veerhusen, John J Chilenski, Leanna K.
Rierson. “A Practical Tutorial on Modified Condition/Decision
cmgc". NASA, pp.7-11, 2001.

[6] Janvi Badlaney, Rohit Ghatol, Romit Jadhwani, “An Introduction to
E{-Flm\-‘ Testing”, North Caroling State University, 2006, in press.

[7] Kshirasagar Naik. Privadarshi Tripathy, “Software Testing and Quality

surance. Theory and Practice”. University of Waterloo, July 200

[8] Clarke, L.A., A. Podgurski. D.J. Richardson, 8.J. Zeil, “A Formal
Evaluation of Data Flow Path Selection Critena,” IEEE Transactions on
B(hl-‘ﬂm Engineering, Vol I3, No. 11, November 1989.

[9] A Aho, R. Sethi, and J. Ullman. “Compilers: Principles, Techniques
and Tools”. Addison-Wesley, Reading, MA, 1956,

[10] G. Ammons. T. Ball. and J. Larus. “Exploiting hardware performance
counters with flow and context sensitive profiling”. ACM SIGPLAN
Notices, 32(5):85-96, June 1997. Proceedings of the SIGPLAN '97
nnﬁ:mnw on Programming Language Design and Implemeniation

[11] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler.
“Exe: automatically generating mputs of death”™. /n CCS 06
Proceedings of the 13th ACM conference on Computer and
communications security, pages 322-335, New York, NY, US4, 2006.
ACM Press.

[12] P. Godefroid. N. Klarlund, and K. Sen. DART, “directed automated
random testing ". SIGPLAN Notices, 40(6):213-223, 2005.

[13] http:/junit.org/

[14] ap: [www seleniumhg.org/

[15] J. R. Horgan, 8. London, “A data flow coverage testing tool for C7.
Bellcore, Proceedings of the Second Syvmposi on A of
ﬁ.‘y Saftware Development, 1992, pages 2-10, IEEE Press.

[16] J. R. Horgan. S. London, “Data [low coverage and the C language”.
Bellcore, Proceedings of the symposium on Testing, analysis, and
verification, 1991, pages 87-97, ACM Press.

05 internasional conference ICEEI

ORIGINALITY REPORT

2(. 24, 25,

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

.

hed.cengage.co.in

Internet Source

4,

)

slideplayer.com

Internet Source

4,

e

shemesh.larc.nasa.gov

Internet Source

2%

=

Jonathan de Halleux. "White-box testing of
behavioral web service contracts with Pex",
Proceedings of the 2008 workshop on Testing
analysis and verification of web services and
applications - TAV-WEB 08 TAV-WEB 08, 2008

Publication

2

£l

pag.lcs.mit.edu

Internet Source

1o

S. London. "Data flow coverage and the C
language", Proceedings of the symposium on
Testing analysis and verification - TAV4 TAV4,
1991

Publication

1o

J.R. Horgan, S. London. "A data flow coverage
testing tool for C", [1992] Proceedings of the
Second Symposium on Assessment of Quality
Software Development Tools, 1992

Publication

1o

B Elisa Margareth Sibarani. "Simulating an
integration systems: Hospital Information
System, Radiology Information System and
Picture Archiving and Communication System”,
2012 2nd International Conference on
Uncertainty Reasoning and Knowledge
Engineering, 2012

Publication

1o

epublications.bond.edu.au

Internet Source

1o

Sangharatna Godboley, Arpita Dutta, Durga
Prasad Mohapatra, Rajib Mall. "Scaling
modified condition/decision coverage using
distributed concolic testing for Java programs”,
Computer Standards & Interfaces, 2018

Publication

-
o

1o

11 archives.ece.iastate.edu

Internet Source

1o

ir.lib.uwo.ca

Internet Source

1o

www.goldpractices.com

Internet Source

<1 %
www.cse.unsw.edu.au <1 .
Internet Source /o
ljeat.or
IrJ\ternet Sougrce < 1 %
Li-Jen Kao, Yo-Ping Huang, Frode Eika <1 o
Sandnes. "Mining time-dependent influential °
users in Facebook fans group”, 2016 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC), 2016
Publication
toc.proceedings.com
Internept Source g < 1 %
Pankaj Jalote. "An Integrated Approach to <1
. . . %
Software Engineering", Springer Nature
America, Inc, 1997
Publication
www.scholarpublishing.or
Internet Source p g g < 1 %
www.internationalscienceindex.or
Internet Source g < 1 %
d-nb.info
Internet Source < 1 %

etheses.whiterose.ac.uk

Internet Source

22
<1 %
www.diva-portal.or
Internet Source p g <1 %
www.allaboutcomputing.net
Internet Source p g < 1 %
Ahlam Ansari, Mirza Baig Shagufta, Ansari <1 o
Sadaf Fatima, Shaikh Tehreem. "Constructing °
Test cases using Natural Language
Processing”, 2017 Third International
Conference on Advances in Electrical,
Electronics, Information, Communication and
Bio-Informatics (AEEICB), 2017
Publication
www.docstoc.com
Internet Source < 1 %
Michael Beeck. "Formalization of UML- <1 o
Statecharts”, Lecture Notes in Computer °
Science, 2001
Publication
Saif-ur-Rehman Khan, Aamer Nadeem, Ali <1 o
0

Awais. "TestFilter: A Statement-Coverage
Based Test Case Reduction Technique", 2006
IEEE International Multitopic Conference, 2006

Publication

homes.cerias.purdue.edu

Internet Source

<1
users.utcluj.ro
Internet Source J <1 %
Gen Li. "Mixing Concrete and Symbolic <1 o
Execution to Improve the Performance of °
Dynamic Test Generation", 2009 3rd
International Conference on New Technologies
Mobility and Security, 12/2009
Publication
www.ijcst.com 1
Internet Source < %
Kalpesh Kapoor. "Experimental evaluation of <1 o
the tolerance for control-flow test criteria”, °
Software Testing Verification and Reliability,
09/2004
Publication
www.ijirt.or
Internet SJource g <1 %
crest.cs.ucl.ac.uk
Internet Source < 1 %
www.iariajournals.or
Internet SourceJ g < 1 %
Salwa Othmen, Aymen Belghith, Faouzi Zarai, <1 o

Mohammad S. Obaidat, Lotfi Kamoun. "Power

and Delay-aware Multi-Path Routing Protocol
for Ad Hoc Networks", 2014 International
Conference on Computer, Information and
Telecommunication Systems (CITS), 2014

Publication

Naik. "Data Flow Testing", Software Testing <1 o
and Quality Assurance, 08/08/2008 °
Publication
aticleworld.com

Internet Source < 1 %

astel.archives-ouvertes.fr

Irr?ternet Source < 1 %
www.dtic.mil

Internet Source < 1 %
Lecture Notes in Computer Science, 2010.

Publication g <1 %

Chi-Ming Chung, W.C. Pai. "Testing criteria <1 o
selecting strategy", Proceedings of TENCON'94 °
- 1994 |[EEE Region 10's 9th Annual
International Conference on: 'Frontiers of
Computer Technology', 1994
Publication

Communications in Computer and Information <1 o

0

Science, 2015.

Publication

T.J. Weigert. "Improving software quality

through a novel testing strategy”, Proceedings 1
Nineteenth Annual International Computer Yo
Software and Applications Conference
(COMPSAC 95) CMPSAC-95, 1995

Publication

"Testing", Texts in Computer Science, 2005
46 L < o,
Publication o
Exclude quotes Off Exclude matches Off

Exclude bibliography Off

	05_internasional conference ICEEI
	by Arlinta C Barus

	05_internasional conference ICEEI
	ORIGINALITY REPORT
	PRIMARY SOURCES

