A Cost-Effective Random Testing
Method for Programs with Non-
Numeric Inputs

by Arlinta Barus

Submission date: 22-Mar-2019 08:42AM (UT C+0700)
Submission ID: 1097571674

File name: 01_IEEE_Journal_Version.pdf (378.31K)
Word count: 13747

Character count: 69597

Hs article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

A Cost-Effective Random Testing Method for
Programs with Non-Numeric Inputs

Arlinta C. Barus, Tsong Yueh Chen, Member, IEEE, Fei-Ching Kuo, Member, IEEE,
Huai Liu, Member, IEEE, Robert Merkel, and Gregg Rothermel, Member, IEEE Computer Society

)
!bstract—Flandom testing (RT) has been widely used in the testing of various software and hardware systems. Adaptive random
testing (ART) is a family of random testing techniques that aim to enhance the failure-detection effectiveness of RT by spreading
random test cases evenly throughout the input domain. ART has been empirically shown to be effective on software with numeric
inputs. However, there are two aspects of ART that need to be addressed to render its adoption more widespread - applicability to
programs with non-numeric inputs, and the high computation overhead of many ART algorithms. We present a linear-order ART
algorithm for software with non-numeric inputs. The key requirement for using ART with non-numeric inputs is an appropriate
“distance” measure. We use the concepts of categories and choices from category-partition testing to formulate such a measure. We
investigate the failure-detection effectiveness of our technique by performing an empirical study on 14 object programs, using two
standard metrics - F-measure and P-measure. Qur ART algorithm statistically significantly outperforms RT on 10 of the 14 programs
studied, and exhibits performance similar to RT on three of the four remaining programs. The selection overhead of our ART algorithm

is close to that of RT.

Index Terms—Random testing, adaptive random testing, category-partition method.

1 INTRODUCTION

RANDOM Testing (RT) [1] — that is, testing software by
randomly generating inputs — is a standard testing
approach. RT is also a mainstream approach for reliability

imation; for example, RT can help calculate the failure rate,
which refers to the probability of an input causing failure of
the EEltware under test. Arcuri et al. [5, pg. 258] observe that
RT is “one offhhe most used automated testing techniques
in practice”. RT has been widely applied to the testing of
various systems [4], [17]. Considerable research has also
been conducted to propose methodologies for generating
ran{ilin test cases [15], [30].

Adaptive Random Testing (ART) [9] is a class of ran-
dom testing techniques designed to improve the failure-
detectifels) effectiveness of RT by increasing the diversity
acroged program’s input domain of the test cases executed.
The Fixed-Size Candidate Set ART technique (FSCS-ART),
was thefi(B} ART technique, and is also the most widely
studied. To gdfrate an additional test case using FSCS-ART,
a number of candidate test cases are randomly generated.
Ee candidate that is the most “distant” from previously
48
This research was supported by the Air Force Office of Scientific Research
through award FA9550-10- 1@ 06 to Lniversity of Nebraska - Lincoln.

. C. Barus is with the Institut Tekgalogi Del, Kab Toba Samosir 22381,
matera Litara, Indonesia. E-mail @linta@del.ac.id

e T Y. Chen and F-C. Kuo are gith Swinburne University of Technology,
Hawthorn 3122 VIC, Austral mail: {tychen, dkuo}@swin.ed.au

e H. Liu (corresponding author) is with Australia-India Research Centre for
Automation Softwgre Engineering, RMIT University, Melbourne 3001
VIC, Australia. E : huai.lin@rmit.ediau

o R Merkel is 1:&4011&5!: University, Clayton 3800 VIC, Australia. E-
mail: robert.m monash.edu

e G. Rothermel is with the Department of Computer Science and Engi-
neering, University of Nebraska - Lincoln, Lincoln Nebraska 68588-0115,
USA. E-mail: grother@cse.unl.edu

executed test cascﬂccording to a criterion known as the
max-min criterion, is selected as the next test case. The
Cartesian distance measure is used to determine the distance
between numeric inputs.

EBous studies using programs with numeric inputs [9],
[21] have shown that ART requires substantially fewer test
cases than RT to reveal failures. However, as Ciupa et al. [11]
observe, test case selection overhead can result in FSCS-
ART having poorer overall cost-effectiveness than RT. The
reduction in test cases required to reveal failures was, in
their experiments, outweighed by selection overhead. Ar-
curi and Briand [3] argue that the high selection overhead of
EEY-S-ART renders it unsuitable for practical use. They also
observe that the effectiveness of FSCS-ART on programs
with very low failure rates has not been studied - a fact
that, itself, can be attributed to high selection overhead. A
number of te@Rliques, such as mirroring [8] and forget-
ting [6], were proposfPdo reduce the overhead of various
ART algorithms. More recently, Shahbazi et al. [25] proposed
a new ART approach, Random Border Centroidal Voronoi
Tessellations (RBCVT), which takes advantage of the proper-
ties of the Voronoi tessellation to achieve test case diversity.
The authors developed a novel algorithm (RBCVT-Fast) that
has an O (n) selection overhead (that is, the process of
generating n test cases takes O (n) time). However, RBCVT-
Fast, as presented, is only directly applicable to simple input
domains representable as a d-dimensional real space.

This paper presents an ART algorithm for software with
non-numeric, structured input formats, which retains FSCS-
ART’s failure-revealing effectiveness, and has an O (n)
lection overhead. We provide an approach that relies on
the concepts of categories and choices, originally proposed as
part of the category-partition testing technique [24], to form
the basis of a new “distance measure”. We evaluate the

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

'I'his“c]c has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

effectiveness of this ART algorithm orffJ4 object programs
that have non-trivial input formats, using two srd
effectiveness metrics, the F-measure and P-measure, as well
as test cff generation time.

The remainder of this article is organized as follows.
Section 2 provides essential background on ART, categories
and choices. Section 3 describes the theoretical framework
for applying ART to flinumeric software, and our linear-
order ART algorithm. Section 4 presents our empirical study,
including details on the study setup. Section 5 presents our
experiment results, including quantitative statistical analy-
sis of those results. Section 6 presents further interpretation
and discussion of the results. Section 7 discusses related
work. Some concluding thoughts, including recommenda-
tions for future study, are offered in Section 8.

2 PRELIMINARIES AND BACKGROUND
21 ART

Chenetal. [9] proposed ART as an enhancement to RT. Their
approach was based on the intuition of “even spreaf@. A
number of studies [2], [27] have found evidence that faults
tend to cause erroneous behavior to occur in contiguous
&:ions of the input domain. Thus, Chen et al. [9] argued
that two test cases whose ingfills were “close” to each
other in the input domain were more likely to have similar
execution behaviors than two test cases that were more
“widely separated”. Hence, they reasoned that a method
that spreads test cases more evenly would identify failures
using fewer test cases.

To implement this idea, Chen et al. [9] intffduced a
distance-based ART algorithm, also known as Fixed-Size
Candidate Set ART (FSCS-ART). In FSCS-ART, two sets of
test cm are considered: the executed set, E, which records
those test cases that hafalready been executed, and the
candidate set. To select a new test case, a set of k candi-
dates (€1, ¢3,...,¢x) is first “generated randomly” as the
candidate set. From these, the best candidate ¢, is selected
according to a criterion, and testing is conducted with ¢,,
which is §{lilh added to E. Testing continues until a pre-
specified stopping criimm is met, such as the detection of
failures, the execution of the required number of test cases.

The original FSCS-ART used the max-min criterion. For
each candidate ¢;, the Cartesian distance to each member of
E is calculated, and the smallest distance for ¢; is recorded
as d;. The candidate ¢, with the largest d; is selected (i.e.,
d, > d; ¥i,1 < i < k). An alternative selection criterion is
the max-sum criterion. In this case, for each candidate, the
sum of the distances to each member of E is calculated, and
the candidate for which this sum is the largest is chosen.

ART algorithms may consider the entire set of previ-
ously executed test cases when selecting the best candidate.
However, as Chan et al. [6] show, it is possible to greatly
reduce the selection overhead of ART techniques, while
retaining much or all of their failure-revealing effectiveness,
by evaluating only a subset of E when selecting the best
candidate. They call this technique forgetting.

2.2 Categories and choices

To test software with non-numeric input formats using
FSCS-ART, two things are required:

2

e A method for randomly sampling inputs from the
software’s input domain.

« A way of measuring the “distance” between ele-
ments of the software’s input domain.

The first requirement is common to all RT techniques, while
the second is unique to ART; hence, the latter is our focus.

To understand our new distance measure, we need to
know why the Cartesian distance is an effective distance
measure for ART on software with numeric inputs. Most
numerical software consists primarily of compositions of
continuous functions. Given two inputs close to each other,
as measured by the Cartesian distance, it is likely that
their execution patterns will be similar, and thus that their
failure behaviors will also be similar. It is this similarity in
execution patterns that we seek to measure in a broader
range of software.

To achieve this, we have developed an approach based
on the concepts of categories and choices from the category-
B2 ition method [24]. In this method, the tester must identify
input parameters or environmental conditions that affect
the execution of the functional unit under test, which are
characterized as cafegories. Each category is then partitioned
into disjoint partitions, called choices, which cover values the
category may take. Each choice represents “a set of similar
values that can be assumed by the type of information in
the category”. For instance, consider a transaction process-
ing system handling a large range of monetary and non-
monetary quantities (for instance, it may deal with cash and
credit transactions, and the transfer of items from a stock in-
ventory); here, an appropriate category may be “unit type”,
with choices “cash”, “credit”, and “inventory item”. Here,
a transaction involving a cash amount of $123.45 would
have a unit type of “cash”, while a transaction involving the
transfer of 10 widgets would have a unit type of “inventory
item”. In the category-partition method, constraints (stated
within the software specification) are used to identify which
combinations of categories and choices are valid, and which
are not. Then, all valid combinations of categories and
choices are generated as test frames. Each test frame is then
fleshed out into a concrete test case using representative
data for each choicain the frame. In our present work,
we simply use the concepts of categories and choices to
formulate a distance measure for ART. Our approach is
presented in detail in Section 3.1.

3 THEORETICAL FRAMEWORK
3.1 A distance measure for non-numeric inputs

The distance measure, originall veloped by several of the
authors of this paper [20], [22], makes use of the concepts of
categories and choices from the category-partition method
described in Section 2.2. &

In the category-partition method, categories and choices
are used to obtain test frames, from which concrete test cases
are generated. In our approach, we work in the opposite
manner: for a given concrete input, we identify its relevant
test frame. Categories and choices are still defined as de-
scribed above. However, rather than simply generating all
valid test frames from the defined categories and choices,
we take two program inputs, determine their categories and

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

Hs article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

choices, and use this information to calculate the distance
between them, with a greater distance representing more
dissimilar inputs. Technically speaking, given two program
inputs & and y, our distance measure is a count of the num-
ber of categories in which @ and y have different choices.

More formally, let us denote the set of categories by
A = {A;, As,..., Ay}, where g denotes the total number
of categories. For each A;, its choices are denoted by P; =
{pi.p5,...,p}}, where h denotes the number of choices for
A;. Note that the choices for a single category are disjoint,
and that any input is a combination of input values chosen
such that the inputs correspond to choices from a non-empty
subset of A. For input z, let us denote the corresponding
non-empty subset by A(x) = {AT, CTRRRRY: 4 }, where ¢
refers to the number of categories associated with x. Since
categories are distinct and their choices are disjoint, input «
in fact consists of values chosen from a non-empty subset
of choices, denoted as P(x) = {p{.p3,....p}}, where p?
(i =1,2,...,q) is the choice of the category A7 for x.

For any two inputs = and y, we define DP(z, y) as the
set that contains effents in either P(x) or P(y) but not
both. That is, DP(z,y) = (P(z)U P(y)) \ (P(z) P (y)),
where “\” is the set difference operator. Now, we define
DA(z,y) = {A?,L|A,; if Elpj,- € DP(x, y)}, In other words,
DA(x,y) is the set of Bgories in which inputs = and y
have different choices. Then, the dist§& measure between
x and y is defined as |DA (. y) | (the size of DA(xz,y)); that
is, the number of categories that appear in either = or y but
not both, or in which the choices in = and y differ.

For example, consider again the transaction processing
system in Section 2.2 with the categories and choices shown
in Table 1. Assume that we have three inputs, z, y, and z,
the processed transactions and relevant categories/choices
of which are given in Table 2. We can calculate DP, DA, and
|DA]| for each pair of these three inputs as shown in Table 3.
By our measure, x and y have a distance of 3, x and z have
a distance of 1, and y and z have a distance of 3.

TABLE 1
An Example of Categories and Choices

Choice
Cheque

Credit
Inventory item
Business
Personal
Government
Other
Accepted
Rejected

Category

Unit type

Customer type

Status

Obviously, categories and choices are not suitable for
all non-numeric programs or all types of inputs. However,
they have been popularly applied to many non-numeric
applications in various fields, so the proposecfflistance
measure should have wide applicability in the testing of
various programs with non-numeric inputs.

3.2 Alinear-time ART algorithm

We now present an ART algorithm for structured inputs
using the category-choice distance measure to achieve a
linear test case selection time (i.e., selecting n test cases takes

3

TABLE 2
Three Example Inputs

Input|Processed Transaction Category and Choice

A cleared cheque payment of Unit type:Cheque
x [$123.45 from Anycorp, a business [Customer type:Business
customer. Status:Accepted

A credit card payment of $543.21 : i .
from Mr. Fredpl’ﬁisher, a personal Unit type:Credit
customer whose dubious identity [Customer type:Personal
leads to the payment being rejected.[Status:Rejected

The dispatch of 12 widgets from [Unit type:Inventory item
stock to Othercorp, a business Customer type:Business

customer. The order is accepted. Status:Accepted
TABLE 3
Calculation of Distances Among =, y, and 2
Between the pair of| DP DA |DA]|
Unit type:Cheque Unit type

Unit type:Credit

Customer type:Business

Cus

(x,y) Customer type:Personal ustomer type| 3
Status:Accepted
Status:Rejected Status
Unit type:Cheque :

(,2) Unit type:Inventory Item Unit type 1
Unit type:Credit i
Unit type:Inventory Item Unit type

3 Customer type:Personal

@2) Customer type:Business Customer type| 3
Status:Rejected Eai
Status:accepted atus

O (n) time). Compared to FSCS-ART, our algorithm also
requires a candidate set, but uses the max-sum criffon in
an innovative way that calculates the sum of the distance
between each candidate and all previously executed test
cases. We call this algorithm “ARTsum”".

Before presenting ARTsum, let us briefly recall the
naive implementation of the max-sum criterion as follows.
Suppose that n test cases have been selected and exe-
cuted, denoted by E = {ej,es.....e,}. Each test case
e;j (j = 1,2,...,n) is associated with a set of choices
Ple;) = {pf’,p;'i,..'. ,p:j’._ It P(e;) can be rewritten as
a tuple Rie;) = (r’,ry,...,ry’), where g is the total
number of categories, 7;’ = (means that ¢; is not associated
with category A;, and r;” = [(I > 1) means that ¢; is
associated with the /th choice of A;. Similarly, a candidate ¢

can also be associated with the tuple R(c) = (r§,75,...,75).
Define a function as follows:
. 0 ifre =177,
D(i, 5) = ey € 1)
1 ifrf#r”,
'

where i = 1,2,...,gand j = 1,2,...,n. The distance
between ¢ and e; can then be calculated as dist(c,e;) =
37 . D(4,7). Note that dist(c,e;) is effectively equal to
[DA(e, ;) |. Therefore, the sum of the distances from ¢ to
all executed test cases can be calculated as:

mn g
sum_dist(c, E) = Z (z D{-i._j)) : (2)

j=1 \i=1

Clearly, if we calculate the sum of the distances ac-
cording to Equation 2, the selection of the next test case

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

'I'his“c]c has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

requires O (n) time (note that g is a constant). Therefore, a
naive implementation of max-sum using Equation 2 has a
computation overhead of O (nz} for selecting n test cases.

Recall the three example test cases x, ¥, and z shown in
Table 2. Suppose that E = {x,y} and z is the candidate. We
have R(z) = (1,1,1), R(y) = (2,2,2), and R(z) = (3,1, 1).
Then, we can calculate dist(z,z) = 1+ 0+ 0 = 1 and
dist(y,z) =1+ 1+ 1 = 3 (as also given in Table 3). Hence,
we finally get sum_dist(z, E) =1+ 3 = 4.

Our linear-order ARTsum is based on Theorem 1.

Theorem 1. Define a tuple of integers 8 =
(s{f,s}, ... _.si”.,s{:},sé, . .,s.’z'*., .. egeé ... ,s:;-" , where g
is the total number of categories, h; is the total number ofipices
for the ith category A; (i = 1,2,...,¢q), s¥ denotes the number

of previously executed test cases that are massocfmed with the
ith category A;, si (I; = 1,2,...,h;) denotes the number of
previously executdgddpst cases associated with the l;th choice of
Aj;. Let n denote the number of previously executed test cases,

that is, n = |E|. By definition, E:" s =nVi,1<i<g. For

= %

a candidate ¢ associated with R(c) = (r{,r5,...,75), the sum
distance between ¢ and E is:
g i
sum_dist(c, E) = Z (n - 9:) ; (3)
i=1

Proof. For each r{ (i =
spolikdhg value s;' from S, where s;' effectively means
the number of execuf@ test cases that satisfy r{ = r{’.
Therefore, (n. - s:) is equal to the number of executed

1,2,...,9), we can find a corre-

test cases that satisfy r{ # 7. According to Equation 1,
(n - 9:') = »_i—1 D(i, j). Following Equation 2:

n g g9 n
sum_dist(e, E) = Z (Z D(i,j)) = Z ZD(i,j]
i=1

j=1 \i=1 i=1

89
ri
= E (?E—SE') .
i=1

Thus, Theorem 1 holds; that is, Equation 3 gives exactly
the same results as Equation 2. (]

Consider z, ¥, and z in Table 2 again. Given that E =
{z,y}, we can let S = (0,1,1.0,0,1,1,0,0,0,1,1), where
3[1’ = () because both r and y contain a choice for the first
category, 3}_ = 1 because only x contains the first choice of
the first category, ---, s2 = 1 because only y contains the
second choice of the third category. Since R(z) = (3,1,1),
we can use Equation 3 to calculate sum_dist(z,E) = (n —
sHh+m—sd)+n—-shH=2-0)+2-1)+((2-1)=4.

Theorem 1 implies that if Equation 3 is used, the selec-
tion of a next test case requires a constant time. Now, we

resent our Algorithm ARTsum, in which S is dynamically
&iated during the testing process. Once the candidate ¢,
with the largest sum distance is selected as the new test
case e, (refer to Line 13 in the Algorithm), we update S
accordingly by incrementing each a':" ’
(refer to Line 16). Note that both updating S after executing
a test case and thflilistance calculation for the candidate
using Equation 3 are independent of the number of test

4

cases; therefore sele@lifs a single test case takes constant
time. Thus, selecting a set of n test cases takes O (n) time.

Algorithm ARTsum

1: Initialize S (as defined in Theorem 1) by setting each ‘;i

as 0, where i = 1,2,...,¢ (g denotes the total number of
categories)

2 Setn=0and E = {}

3: Define an integer k& > 0 as the number of candidates to be

generated

4: while Termination condition is not satisfied do
5; Increment n by 1
6 if n = 1 then
7 Randomly generate a test case e,
& ElS
9: Randomly generate k candidates c1, ¢z, ..., ¢k
10: forallc, (u=1,2,...,k) do
11: Calculate sum_dist(c,,E) according to Equa-
tion 3
12: end for
13 Set en = o, where Yu,sum_dist(c,,E) =
sum_dist(cy, E)
14: end if
15: Add e, into E .
16: Update S by incrementing each s* by 1, where i =
;20050
17: end while

4 EMPIRICAL STUDY
4.1 Research questions

As proven in Section 3.2, ARTsum generates test cases in lin-
ear time. However, we also wish to evaluate the approach’s
failure-detection effectiveness, and empirically assess its
computational overhead. Thus/fE% conducted an empirical
study examining the following research questions:

RQ1 How effective is ARTsum at revealing failures?

RQ2 How does the actual selection overhead of the
ARTsum algorithm compare to its overhead cal-
culated via theoretical complexity analysis, and
to the overhead of alternative techniques?

4.2 Object programs

To address our research quest{Zf@, we chose to study three
sets of object programs: seven programs from the Software-
artifact Infrastructure Repository (SIR) [13], six small Unix
utilities, and the regular expression processor component
of the larger utility program GNU grep. The fourteen
programs, all implemented in C, are summarized in Table 4.
These three sets of programs present complementary
strengths and weaknesses as experiment objects. The SIR
repository provides object programs, incl@g a number of
pre-existing versions with seeded faults, as well pool
of test cases that can be further fuzzed to provide test cases
for RT and candidates for ART. Howeve&ws& programs
are small and there are only a limited number of faulty
versions available for each program. The Unix utilities that
we use are also relatively small and simple, but they are
provided with sets of faults in the form of mutants. The
grep program (even when restricting attention to its regular
expression processor component) is a much larger system
for which mutation faults could be generated. We provide
further details on each of these sets of object programs.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

Hs article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

TABLE 4
14 C Programs as Experimental Objects

Name Source|Brief description LOC|# Faults
printtokens | SIR |lexical analyzer 483 7
printtokens2| SIR |lexical analyzer 402 | 10
replace SIR |search and replace tool 516 | 31
schedule SIR [scheduler 299 9
schedule2 SIR |scheduler 297 9
tcas SIR |collision alarm logic 138 4
totinfo SIR |basic statistics 346 23
cal 5unO5|calendar display 163 11
comm 5unO5|file comparator 144 | 27
look SunOS|file searcher 135 29
sort SunO5|file sorter 842 48
spline SunOS|curve interpolation 289 16
unig SunO5|file comparator 125 29
grep GNU [regular expression processor|3,161| 20
Total 7,340 310

4.2.1 Program set 1: SIR progmrs

We selected seven object programs (printtokens,

printtokens2, replace, schedule, schedule2, tcas,
and totinfo) from SIR [13] for several reasons:

« The programs are of manageable size and complexity
for an initial study.

« The input format of the programs is non-trivial, but
manageable.

» Faulty versions of the programs are available.

« All programs and related materials are available
from the SIR, facilitating replication of our studies.

Note that two of the SIR programs (tcas and totinfo)
accept numbers as inputs. However, the random test case
generation for them is not as straightforward as that for
typical programs with pure numeric inputs: We could not
simply generate random numbers according to a uniform
distribution. In our experiments, we generated more struc-
tured inputs based on the analysis of the input domain (by
identifying catefries and choices).

For the SIR programs, we used the existing faulty ver-
sions present in the repository for comparison. While these
were seeded faults rather than actual ones, they were cre-
ated by multiple persons based on their own experiences
with faults. Table 4 lists the numbers of faults utilized for
each of the programs. replaceffld schedule2 both had
one faulty version which was not killed by any existing
test cases from the pool, so we excluded these two faulty
versions from our study.

4.2.2 Program set 2: Unix utilities

The second set of object programs is a set of Unix utilities,
cal, comm, look, sort, spline, and unigq, whicha'ere
distributed as part of SunOS 5.8 and are part of BSD 4.3. For
these Uk utilities, faults in the form of mutants had pre-
viously been generated by the automated C mutation tool,
Proteum [12], which applied a total of 71 fff}tation operators
to create mutants from these programs. Not all generated
mutants were used, as some failed on virtually every test
case, whereas others produced behavior equivalent to that
of the original program. In this study, we filtered the initial
set of mutants provided with the program as follows.

5

e Determine the failure rates of the mutants using RT
with a sle size of 100,000.

s Discard mutants that are not killed by any of the
100,000 random test cases.

« Discard fitants with failure rates greater than 0.1.

o Identify mutants that have exactly the same set of
failure-revealing inputs. For each such set of mu-
tants, randomly select one for use in the study.

4.2.3 Program set 3: GNU grep

Our final program is version 2.5.1a of the GNU grep [26]
program, ww is described by its “man” page as follows:
The grep command searches one or more input
files for lines containing a match to a specified
pattern. By default, grep prints the matching lines.

We chose grep for our study for several reasons:

« As a GNU project, current and historical versions are
freely available including source code and a partial,
but still useful, change history.

s The grep program is in wide use, providing an
opportunity to demonstrate the real world relevance
of our techniques.

o The grep program, and its input format, are of
greater complexity than the programs in the other
test sets, but still manageable as a target for auto-
mated test case generation.

grep’s large size meant that constructing test infrastruc-
ture for the entire program would have been infeasible for
this study. Thus, we focused on grep’s regular expression
analyzer, which was still much larger than other programs
studied, consisting of 3,161 lines of code and 1,423 branches.

We also had to take a different approach to provid-
ing faulty versions of grep for our experiments. grep’s
software change log showed that most faults found and
fixed in grep were either platform-specific, or manifest so
rarely that they render experimental comparisons of failure-
detection effectiveness impractical.

However, one reported grep fault in the public version
history for the program was suitable for our use. The fault
relates to incorrect handling of range expressions (such as
[a-e], which matches the characters from the set {a, b, ¢,
d, e} if the default Unix locale is used) with non-default
locales, which may define their own character ordering. As
a consequence, with some locale settings [a-e] should match
theset {a, A, b, B, ..., e}, for instance, but did not. To expose
the fault, we changed the locale setting to “en_US.UTF-8"
for our experiments.

One real fault is insufficient to support a comprehensive
study, so we also used program mutation to generate ad-
ditional faulty versions of grep for our experiment. Due
to limitations in the ability to restrict Proteum to creating
mutants for a specific part of grep (the regular expression
analyzer), it was impractical to use it to generate gffficient
mutants for grep. Thus, we developed a custom tool that
applied two types of mutation operators — statement mutation
and operator mutation. One statement mutation operator
that we applied replaced continue statements with break
statements and vice versa — these statements are common in
the regular expression analyzer in grep. Another statement

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

'I'hisudc has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

mutation operator replaced labels on goto statements. The
operator mutation replaced a single arithmetic or logical
operator with another. Each mutant had only one mutation
operation applied to it. We generated a total of 19 mutants,
resulting in a total of 20 faulty versions of grep.

4.3 Variables and measures
4.3.1 Independent variable

The independent variable in our experiment is the test case
selection strategy. As choices for this variable, we include,
BB ourse, an implementation of the ARTsum algorithm. As
baseline techniques for use in comparison, we selected two
additional techniques, RT and ARTmif .

RT (random testing with replacement) is a natural baseline
choice, because ARTsum is designed as an enhancement to
RT, and assessing whether ARTsum is more cost-effective
than RT is important. In general, an automated oracle is
assumed when RT is applied. In our experiments, the base
programs (for which seeded faults already existed or were
generated) were used to simulate the automated oracles.

ARTmif is an enhanced linear-order ART approach that
combines the max-min criterion with fdEZ@tting. FSCS-ART
can be implemented straightforwardly using the category-
choice distance metric and the max-min selection criterion.
However, selecting n test cases has an overhead of O (n?),
which may lead to infeff} cost-effectiveness, depending on
the failure rate and the execution time of the program under
test. A “forgetting” technique can be used to reduce the
overhead of the approach to O (n) if an ART algorithm con-
siders only a fixed-sized subset of the previously executed
test cases when selecting the best candidate. However, prior
studies [6] on forgetting always arbitrarily define the size of
the subset. In this study, we used a more precise heuristic
for conducting the forgetting process:

« During each round of test case selection, count how
many candidates have the same minimum nearest
neighbor distance d,.

« When the following two conditions are both satis-
fied, forget all already executed test cases and then
perform max-min FSCS-ART from scratch.

— Over 90% of the candidates h he same d,,.
- d, is less than or equal to the number of
categories divided by 10.

Given the finite number of categories, if candidates are
selected randomly, the probability that most candidates
have the same small nearest neighbor distance to prevfiisly
executed test cases asymptotically approaches one as the
number of previously executed test cases inc s. In other
words, there is an upper bound on the size of the subset
of previously executed test cases that satisf{fhe above
conditions. Thus, ARTmif has a computational overhead of
O (n) for generating n test cases.

There exist some techniques, such as quagffandom test-
ing (QRT) [10] and RBCVT-Fast [25], that can achieve a
computation overhead as low as O (n). However, they can
be applied only to test software with an exclusively numeric
input domain, and therefore could not be compared to
ARTsum and ARTmif in our study.

6

4.3.2 Dependent variables

The choice of a metric to use in comparing the effectiveness
of testing techniques is non-trivial.

For RQI, to best characterize [} failure-detection effec-
tiveness of the methods, we use two f@ndard metrics: the
F-measure and the P-measure [7]. The F-measure is defined
as the mean number of test cases required by a [E@thod to
reveal the first failure. We define F-count as the number of
(L} cases needed to detect a failure in a specific test run. The
F-measure is the expected F-count for a testing method:

F-measure = F-count.

4)

A smallf] F-measure reflects better effectiveness.

The F-measure is particularly appropriate for measuring
the failure-detection effectifhess of adaptive testing meth-
ods, such as ART, in which the generation of new test cases
depends on the previously executed test cases. However,
evaluation of the F-measure requires an automated oracle
(because testing must be stopped after failure detection),
which may not always be available. Thus, we also used
the P-measure, which can characterize the testing process
without an automated oracffJSuppose that a particular
method is used to erate a test suite with n test cases
{t1,t2....,1,}, the P-measure is defined as the probability
of at least one failure being detected by the test suite:

(5)

where i = 1,2,...,n. A larger P-measure reflects better
failure-detection effectififlless. Besides providing a com-
lementary evaluation to the F-measure, the P-measure is
&o more appropriate than another standard metric, the
E-measure (the expB3d number of failures): as observed by
Shahbazi et al. [25], multiple failures may be associated with
the same software fault.
For RQ2, our dependent variable is simply the time
required for the testing techniques to generate test cases.

P-measure (n) = Prob(3t; that reveals a failure),

4.4 Generation of categories and choices for object
progggms

The categories and choices used for the object programs
considered in this study were designed by the authors.
In large part, the selection of appropriate categories and
choices is at a tester’s discretion; we chose what we regarded
as simple approaches for emulating that process.

For the programs taken from the SIR, and the Unix
utilities, limited documentation was available, so wem
ferred the behavior of each program by examining the test
inputs and outputs, as well as the source code. To avoid
a possible source of bias, while designing categories and
choices, we did not examine the faults. As noted previously,
our categories and choices for grep were designed to test its
regular expression analyzer. To obtain these, we consulted
the user documentation.

Precise details on the categories and choices used in our
study are provided in Tables A4 to Al5 in the Appendices.

4.5 Generation of test cases for object programs

Each of the SIR programs had an existing pool of test
cases, but these pools were not large enough (having a

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

Hs article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

few thousand test cases per program) to ensure sufficient
randomness. Thus, rather than sampling test cases from the
existing pools, we used a number of techniques to dynami-
cally generate test cases on demand. Our approach has some
similarities to fuzz testing. We first analyzed the existing
test pools to obtain the probability distributions of certain
parameters. Then, according to the probability distributions,
the concrete values of these parameters could be randomly
chosen. The detailed procedure for test case generation for
each object program can be found in Appendix A.

For the Unix utilities, Wong et al. [29] developed a
random test case generator, which we used in our study.

For grep, we used a generator that was itself based
on the categories and choices devised for ART selection.
We systematically generated random candidate test cases,
which were collectively guaranteed to cover each category
and choice. Our test generator does not randomly sample
from the entire input domain of grep; rather, it samples a
small subset of the input space, as our purpose is to test the
regular expression analyzer of grep. We further filtered the
randomly generated pool to remove duplicate entr{EE) The
final pool contained 171,634 elements. Readers can refer to
Appendix B for more technical details on the random test
case generation process for grep.

m Experiment environment

All experiments were conducted on a cluster of 64-bit Intel
Clovertown systems running CentOS 5. The large number of
experimental trials required to collect data with sufficiently
narrow confidence intervals consumed a great deal of com-
puter time, making the use of the cluster essential to obtain
results in a reasonable time. The object programs were
written in standard C and did not require any modifications
to compile and run on the nodes in the cluster.

4.7 Experiment design and analysis strategy

4.7.1 Numberwa ndidates

The parameter k — the size of the candidate set used by
FSCS-ART — is at the tester’s discretion. Previous work [9]
has shown — at least for numeric programs — that failure-
detection effectiveness improves as k increases up to about
10, and then does not improve much further. Thus, our
experiments were all conducted with £ set to 10.

4.7.2 F-measure

For an experiment run, a test case was generatedZElising
RT or ART) and executed on both an unmodified version
of the object program under test and a version containing
the fault of interest. A failure was indicated by a difference
between the outputs of the faulty and original versions. For
each fault, 2000 runs were performed for the RT, ARTmif,
and ARTsum strategies, and the F-measure was calculated
as the mean value of F-counts (refer to Equation 4) across all
the experiment runs. This large number of runs is desirable
due to the statistical properties of the F-count. Typically, the
population distribution of the F-count is geometric for RT
and near-geometric for most ART variants [7]; therefore, the
standard deviation is very high and obtaining acceptably
narrow confidence intervals requires large samples.

7

Being intenflll as an enhancement to RT, we calculated
the ratio of the F-measure for each ART technique compared
to the F-measure for RT for each fault. We refer to this as the
F-ratio. The F-measures for RT on different faults in the same
object program vary by orders of magnitude, and these F-
measures are not normally distributed. Therefore, to con-
cisely summarize the differences in performance between
the methods, we present the relative performance using RT
as the baseline - the F-ratio.

4.7.3 P-measure

Raw data to calculate P-measures was recorded in the
same experiments. For each fault in each object program,
2,000 runs of 1,000 test cases were conducted, and fail-
ures were recordedi/l-measures were calculated accord-
ing to Equation 5 when the number of test cases n =
1,2,...,10,20,...,100,200,...,1000.

The P-measure does not, by its@if§provide enough infor-
mation to assess a testing strategy if the resulting test suites
are of different sizes; thus, a further metric is required. In
this study, we used the aggregation of P-measures across
various test suite sizes, as measured by the total area under
the P-measure graph, namely the “P-measure area”, (ab-
breviated as “PMA”). Suppose that P-measures have been
calculated for N, different test suite sizes {ni,n2,...,ny.}.
where ny < ng < ... < ny,. PMA is calculated as:

P-measure(n,)

PMA = 5 X i+
Z P-measure(n;) +‘2P‘measum(n"_lj % (ni —ni_1)

i=2

(6)

As we discuss in Section 5.1.2, a higher PMA was a re-

liable indicator that a particular parameterized test strategy
was more effective, regardless of test suite size.

4.8 Tﬁais to validity

4.8.1 Internal validity

There are relatively few threats to the internal validity of this
study. Experimental conditions were identical in all respects,
except for the independent variable of the testing method,
for each experiment treatment. Where testing methods were
concerned, one possible issue involves our implementations
of methods, or of testing oracles. It is possible that these
implementations contain errors; however, the amount of
programming required to implement each specific testing
method was small, and the implementations were checked
by wvarious authors. The oracle is computationally trivial,
involving a simple string comparison. Furthermore, the
implementations were all created by the same individuals,
helping ensure that differences in programming abilities
would not bias results. In terms of the execution time com-
parisons, given that the authors implemented both ARTsum
and ARTmif, it was possible that the implementation of
one was more optimized than the other, affecting their
relative computational overhead. The implementations were
reviewed for obvious inefficiencies and none were found.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

'I'hisuclc has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

4.8.2 External validity

The most obvious threat to external validity is that we
consider only 14 object programs. We cannot say whether
the studied methods will exhibit similar results on other
software sy{f¥ms without further study. The selection of
appropriate categories and choices is a subjective process
relying on the knowledge and experience off#§ testers
(which were the authors). Our study considered only one set
of categories and choices for each object program. We cannot
be sure that other testers, presented with the same software
under test, would choose a set of categories and choices
that would achieve similar results. The particular faults we
used, almost all of which were the result of fault seeding
by programmers or randomly applying mutation operators,
may not be representative of real faults and fault distribu-
tions encountered in industrial practice. A further threat to
external validity involves our considering the detection of
a single fault at a time. There is no reason why the same
intuition that explains why ART detects single faults more
quickly than RT should not also hold when multiple faults
are present; however, this needs to be assessed empirically.

4.8.3 Construct validity

As discussed in Section 4.3.2, none of the metrics used here
give a full picture of the fault-finding effectiveness of a test-
ing technique. They all measure fag#e-detection capability,
but do not directly measure the ability of a technique to
detect multiple faults in the software under test.

4.8.4 Conclusion validity

Given the large number of experiment runs conducted for
each fault, we believe that our tests had sufficient statistical
power to draw conclusions about the F-measures and P-
measures of each testing strategy at the individual fault
level. However, the use of weaker nonparametric tests for
statistical significance has limited our ability to show signif-
icant differences where they may exist.

5 DATA AND ANALYSIS
5.1 RQ1: Failure-detection effectiveness
51.1 F-measure

For each object program, we present a boxplot and a table
summarizing the resf{ls. The boxplot for each program
(Figure 1) graphically displays the range of F-ratios through
their quartiles for each of the two ART methods, for all
faulty versions of the program under test. Sfflaller F-ratios
indicate better performance for ART, and an F-ratio smaller
than 1 indicates that ART outperformed RT. The boxplot is
non-parametric, that is, there is [underlying assumption
of statistical distributions. The lower and upper sides of
the box denote the lower and upper quartiles respectively.
The line inside the box indicates the median F-ratio. The
whiskers represent the smallest and largest data within a
range £1.58 x IQR, where IQR is the interquartile range.
Small circles represent outliers outside this range. Full re-
sults are gifggh in Tables A16 to A29 in the Appendices.
Table 5 presents direct pairwise comparisons of the F-
measulls of RT, ARTsum, and ARTmif for each object pro-
gram. Each cell in the table represents the number of faults

8

on which the technique listed above the cell outperformed
the techni@ listed to the left. For instance, in Table 5(a),
the entry in [top right-hand corner of the table shows
that ARTmif had a smaller F-measure than RT on all 11 of
the faults. Similarly, the entry in the bottom left-hand corner
shdi@s that RT outperformed ARTsun on 0 of the 11 faults.

Because the number of faults for each object program
was small and their F-measures were not normally dis-
tributed, conventional parametric hypothesis testing (such
as T-tests or ANOVAs) is not suitable for analyzing our re-
sults [16]. Thus, to test whether the performance differences
were statistically significant, we conducted a Friedman test
for each method. The Friedman test [14] examines whether
the rankings of the methods across trials (faults, in this
case) are as would be expected if they were sampled from
the same population. To use an overall o (probability of
a non-significant difference being incorrectlyfassified as
significant) of 0.05 across the entire paper, we used the
Holm-Bonferroni method [19] to determine which programs
exhibited statistically significant differences. Note that in the
nonparametric statistical test, it is irrelevant whether we use
the F-ratio or the unadjusted F-measure, as the ranking is
unaffected. On all programs except schedule, the testing
methods exhibited failure-detection results that were statis-
tically significantly different. To determine which methods
performed significantly differently for each fault, post-hoc
comparisons using the Wilcoxon signed-rank test [28] with
corrections for multiplicity were used. A bold number in the
tables indicates that the differences between methods was
statistically significant. For instance, the fact that ARTmif
outperformed RT on 17 of the 20 grep faults is statistically
significant, whereas the fact that ARTsum outperformed
ARTmif on 11 of the 20 grep faults is nd)

ARTsum significantly outperformed RT in terms of the
F-measure on 10 of the 14 object programs. For three of
the remaifl four programs, replace, schedule, and
totinfo, there was no statistically significant difference in
the performance of ARTsum and RT. On only one program,
tcas, did RT significantly outperform ARTsum.

ARTmif displayed similar but not identical perfor-
mances. ARTmif outperformed RT on 10 of the 14 object
programs. There were no statistically significant differences
in performance on three programs, replace, schedule,
and schedule2. Again, only on tcas did RT outperform
ARTmif. The magnitude of the performance improvement
varied between programs. The differences in effectiveness
between ARTsum and ARTmif were small. There was a
slight preponderance of results indicating that ARTsum may
marginally outperform ARTmif, but these did not achieve
statistical significance.

5.1.2 P-measure

Figure 2 shows the P-measure for the three techniques for
selected faults to illustrate general trends in the results. Note
the use of logarithmic scales on the x-axis in Figure 2 to
enable the three techniques to be distinguished for small
test suite sizes.

The values of P-measures depend not only on the pro-
gram under test and the testing method, but also on the
size of the test suite. Thus, simply examining individual P-
measures on some specific test suite sizes may not provide a

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

Hs article has been accepted for publication in a future issue of this journal, but has rmn fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers 9
H 2 = 2 : B
- s & B
—_— 2 H] .
LR : R .
ER 4 i —— ’—‘ .
— L |7 = | —

ER 79 ; — . == ==
2 21 21 2

!ﬁ'lrM nvlm AT .-ﬁ'rlu- .-w;m nvlm AT ARTEn

(a) cal (b) comm (c) grep (d) look

| I : H L | T :
- I— 1 . -] [| L

e ABTan Artme AT s Artsm [ARt

(e) printtokens (f) printtokens2 (g) replace (h) schedule
y 2 f 1| e |
[.] L =] Ve/—/— - N
ATt AT ram e At AT . e
(i) schedule2 (i) sort (k) spline () tecas

j

2 g
e astem aste AT,
(m) totinfo (n) uniqg

Fig. 1. Boxplots of F-ratio distributions for ART techniques for each object program

0018-9340 (¢} 2015 [EEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See hitpe//www ieee org/publications_standards/publications/rights/index html for more
information.

“s article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,
IEEE Transactions on Computers

TABLE 5
Number of Faults for Which the Technique on the Top Row Has a Lower (Better) F-measure Than the Technique on the Left

10

(a) cal (b) comm c) grep
| [RT [ARTmif|[ARTsum| | [[RT [ARTmif|ARTsum| | [[RT [ARTmif|ARTsum|
RT|IN/A| 11 11 RT|IN/A| 27 27 RT|IN/A| 17 20
ARTmif|| 0 | N/A 8§ ARTmif|| 0 | N/A 13 ARTmif|| 3 | N/A 11
ARTsum|| 0 3 N/A ARTsum|| 0 14 N/A ARTsumi|| 0 9 N/A
(d) 1look (e) printtokens (f) printtokens2
| [[RT [ARTmif[ARTsum| | Ie® [ARTmif[ARTsum| | [ARTmif[ARTsum|
RT|IN/A| 22 21 RT|N/A| 7 7 RT|IN/A| 10 9
ARTmif|| 7 N/A 13 ARTmif|| 0 N/A 5 ARTmif|| 0 N/A 3
ARTsum|| 8 16 N/A ARTsum|| 0 2 N/A ARTsum|| 1 7 N/A
(g) replace (h) schedule (i) schedule2
| [| RT |ARTwmif|[ARTsum| | | RT [ARTmif|ARTsum| | [[RT JARTmif|ARTsum|
RT|IN/A| 18 14 RT|[N/A 4 4 RT||IN/A 6 8
ARTmif|| 13 | N/A 6 ARTmif|| 5 N/A 8 ARTmif|| 3 N/A 8
ARTsum|| 17 25 N/A ARTsum|| 5 1 N/A ARTsum|| 1 1 N/A
(j) sort (k) spline () tcas
| lIPBT |ARTmif|[ARTsum| | | RT |ARTmif|ARTsum| | [[RT |ARTwmif|ARTsum|
RT|IN/A| 41 47 RT|[N/A| 14 13 RT||IN/A 8 7
ARTmif|| 7 | N/A 31 ARTmif|| 2 | N/A 6 ARTmif|| 33 | N/A 21
ARTsum|| 1 17 N/A ARTsum|| 3 10 N/A ARTsum|| 34 20 N/A
(m) totinfo (n) uniqg
| || RT |ARTm{f|ARTsum| | || RT IARTmtf |ARTsnm|
RT||N/A| 18 17 RT|[N/A| 28 24
ARTmif|| 5 | N/A 3 ARTmif|| 1 | N/A 12
ARTzuml|| 6 20 N/A ARTsum|| 5 17 N/A
iy e y X.-'/f"_' b)
o L “ ’x\. g | wa ./ 3 _r’f
E B . ‘_F::F" ; i . .‘n’: g e }/ ,/,-
- X L I Ny . < /
a1 ,\.f//”_."’ ,‘zi:/ @ & ,a./il [’ "/”/
o e smEE] | e i e

(a) grep fault #6 (b) sort fault #43

Fig. 2. P-measure by technique for selected faults.

complete picture. To enable the statistical analysis of the P-
measure results, we used PMA (as defined in Section 4.7.3)
to aggregate results enabling us to compare the effectiveness
of testing methods. For a given fault, if PMA is larger for a
method o than for another method 3, the performance of o
is superior to that of 3. Figure 2 clearly shows that for the
selected faults, if one method has a higher P-measure and is
therefore more effective than another for a given test suite
size, then it will be equal to or superior than the other for
other test suite sizes. This pattern holds for all faults.

We calculated the PMA for all faults in all programs
and ranked the methods for each fault in each program,
and conducted Friedman tests (applying a Holm-Bonferroni
correction across [{@ hypothesis tests, for both P-measures
and F-measures) to check the statistical significance of the
rankings. Our results showed that, in virtually all cases,

() totinfo fault #2 (d) unig fault #20

if one method demonstrated a superior (lower) F-measure
than another for a specific fault in a program, that method
would have a superior (higher) PMA, and that the differ-
ences that were statistically significant for the P-measures
and F-measures were identical. The rankings of F-measure
and P-measure are almost the same, with a slight difference
only for replace as given in Table 6. The complete PMA's
rankings are given in Table A30 in the Appendices.

RQ2: Test suite generation time

Figure 3 shows the execution time required to generate test
suites of various sizes for three of the 14 object programs
using RT, ARTsum, and ARTmif. Consistent g our the-
oretical analysis, they all require time linear in the size of
the generated test suite. The constant factors for ARTsum,
however, are consistently lower than those for ARTmif.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee httpy//www.ieee org/publications_standards/publications/rights/index. html for more
information.

marlic]e has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

11

RT +
ARTmME
12 taRTsum 3

AT

a5 ARTmM
S [ihrsom
10 = | o

Rimee (3}

Rimee (3}

skze of best suite

(a) printtokens
Fig. 3. Time required to generate test suites
TABLE 6

Number of Faults for Which the the Technique on the Top Row has a
Higher (Better) PMA Than the Technigue on the Left for replace

| || RT |ART.'H!f|ARTSM.'H|

RT|[N/A| 18 14
ARTmif|| 13 | N/A 5
ARTsumi|| 17 26 N/A

TABLE 7

Comparison of Time Required to Generate 10,000 Random Inputs
Using RT, ARTmif and ARTsum

Generation time (s) | Relative generation time
RT | ARTmiif| ARTsum ARTmif TARTsum AKinm‘n
RT RT | ARTmif
cal 0.032]0.15 0.065 [4.7 2.0 23
comm 0.034j0.222 [0.117 |65 34 19
grep 0.011)23.122 |0.064 |2102.0 [5.8 361.3
lock 0.023{0.368 [0.105 |16.0 46 35
printtockens|0.421[13.365 |3.046 |31.7 7.2 44
replace 0.018|2.264 |0.146 (1258 |81 15.5
schedule 0.052|3.637 [0.331 |69.9 6.4 11.0
spline 0.022j0.622 [0.116 (283 5.3 54
sort 0.01112717 |0.072 |247.0 |65 377
tecas 0.018|2.306 |0.104 [128.1 |58 222
totinfo 0.045|1.464 (0.3 325 6.7 49
unig 0.025[0.839 0.1 336 4.0 8.4

Table 7 shows these constant factors by indicating the
time required to generate 10,000 test cases using RT for all
the input generators. Note that schedule and schedule?2
share the same input generator, as do printtckens and
printtokens2, so cnly 12 input generators are listed. We
also compare the relative time taken using the three different
methods for each input generator. As can be seen, there is
wide variation in the relative time costs of input generation
depending on the program. The generation time using the
ARTsum algorithm are within a range of 2.0 to 8.1 times that
of RT, whereas ARTmif takes 4.7 to 2102.0 times longer than
RT and takes 1.9 to 361.3 times longer than ARTsum.

6 DISCUSSION

Overall, ARTsum and ARTmif Wik§ clearly each more effec-
tive than RT, as measured by both the F-measure and P-
measure, on a majority of the object programs considered.
ARTsum also had a much lower selection overhead than
ARTmif, and its overhead was close to that of RT.

-] 000 aoan. m aoa0. 10050 L] 2000 4000

(b) schedule

RT +))
ARTmIF
L2 fARTsum ¥ 1
L)

o " "
Goan 000 10006] w00 000 G000 300 10600
size of test sulte

time i3h

(c) grep

We exfBned the cases in which ARTsum was not sig-
nificantly more effective in terms of fault-detection than RT.
This occurred on the object programs replace, schedule,
and totinfo, where differences between ARTsum and RT
were not statistically significant, and on tcas, where RT
was more effective than ART. Our investigation revealed
an interesting pattern related to the distribution of failure-
revealing inputs in test frames for the different faulty ver-
sions of replace. We first examined the failure rate within
failure-revealing “test frames” — that is, the subsets of the
test pool that shared the same categories and choices, and
contained at least one failure-causing input. We hypothe-
sized that for faults on which ART performed poorly, the
failure rate within the failure-revealing test frame would be
lower. There did not appear to be any such systematic effect,
so we then examined the distribution of the test frames
containing failure-causing input in terms of their average
“distance”. We found that the “distance” between frames
containing failures was higher for faults on which ART
outperformed RT, and lower when RT outperformed ART.
The faulty versions of schedule and tcas, on which ART
exhibited comparatively poor performance, have similar
distributions of failure-revealing inputs in test {gjnes.

One potential explanation for this is that when a test
case [Executed in a test frame that contains a failure, but
that test case does not reveal a failure, this reduces the
chances of selecting nearby test cases. Thus, a technique
will perform better if there are other failure-revealing test
cases located far away, rather than close by. This suggests
that our distance measure and selection criteria could still
be improved. One obvious approach for improvement is
that to maximize testing effectiveness, non-homogeneous
test frames should be avoided, and the best way to do this is
to have fine-grained test frames that correspond to distinct
program functionalities. Testers are best advised to use a
larger number of categories and choices to make as fine-
grained a difference measure as possible, and ensure that
they align with the functionality of the program under test.

Given that grep was our largest program, it is worth
considering effectiveness results on that program in some
detail. For grep, ARTmif was inferior to RT for three faults:
faults 4, 15, and 17 as listed in Table A18 in the Appendices.
We examined these cases in more detail, and found behavior
similar to that occurring in the cases of replace and
schedule. However, we also noted an additional factor:
the inferior effectiveness was related to the non-uniform
distribution of the test cases selected. Such biases have

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

'I'his“c]c has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

been observed in previous studies of ART. In fact, biases
are almost inevitable; it is difficult to achieve an effective
spreading of inputs without inducing some bias towards
certain inputs. ARTmif preferentially selected inputs that
had a large number of choices. For each of the three faults
in grep on which ARTmif did {§§@outperform RT, most
of the failure-causing inpufs had a very small number of
choices. Hence, these failure-causing inputs were less likely
to be selected by ARTmif than by random chance. This is
related to the granularity problems of the distance measure
as discussed in Section 3.2, but is not strictly the same. The
same phenomena affect the results for individual mutants of
the same program. This combined with the relatively small
number of mutants per program, is probably responsible for
a few unusual looking boxplots in Figure 1.

We have shown that ARTsum significantly outperformed
RT on 10 of our 14 object programs. Our results showed that
ARTsum and ARTmif had comparable performance, and that
ARTsum slightly outperformed ARTmif particularly when
there were a small number of categories. However, this is
consistent with our view that the max-sum criterion handles
a coarse distance measure better than the max-min criterion.

We have clearly shown that while both ARTsum and ART-
mif are linear-time algorithms, in practice, ARTsum can incur
a much smaller selection overhead than ARTmif. Therefore,
given that ARTsum and ARTmif have comparable failure-
detection effectiveness, the lower overhead suggests that
ARTsum should be considerably more cost-effective overall.

Despite the satisfactory effectiveness demonstrated by
the “forgetting” strategies employed in ARTmif in this study
as well as prior studies, the settings of their parameters
seem to be arbitrary and are not rigorously justified. This
arbitrariness does not occur for ARTsum, which in our view
is a further reason to prefer it to ARTmif .

Selecting categories and choices for ART may impose an
additional burden on the tester, compared to RT. It is true
that the selection of appropriate categories and choices may
not always be straightforward, and may depend substan-
tially on the tester’s expertise and experience. If random
test cases could be easily generated, RT might be more cost-
effective than ART. Nevertheless, in many practical situa-
tions, especially when the software under test involves more
complicated inputs (such as those with non-numeric types),
it is not straightforward to randomly generatcfEBt cases. As
noted by Arcuri et al. [5, pg. 261], “[w]hen the input domain
consists of numeric inputs, it is easy to uniformly choose
random test cases from it. But it is not always clear how to
do that when more complex types of test cases are used.” To
apply RT to a non-numeric input domain, testers may need
to perform some analysis of the input domain. One useful
method for doing so is by identifying categories and choices,
just as has been done in this paper. If such an approach has
been taken, the additional effort by testers to apply ART
over RT would be small.

A.m'ner interesting issue is that while ARTsum can gen-
erate test cases in linear time, its test case generatin time
is still several times longer than RT. This implies that RT
may be more cost-effective than ARTsum under particular
conditions, especially when test execution time is negligible.
However, the execution of test cases often takes a substantial
amount of time, particularly once the time taken for testing

12

intructure such as setup, teardown, and result reporting
is taken into account. In such a situation, the larger number
of test cases required by RT would result in longer overall
testing time than ARTsum. For example, one of our object
programs, grep, on average took 2.98 x 10~ seconds to
execute a test case. On average, RT required 1.1 x 107°
seconds, and ARTsum took 6.4 x 10~° seconds, to generate
one test case. For grep, therefore, the cost of performing
testing is dominated by the cost of test case execution. The
ratio of total testing time taken by ART over RT was thus
very similar to the F-ratio. For example, on the first mutant
of grep, ARTsum took 1.33 x 1072 seconds, whereas RT
took 3.10 x 1072 seconds. There is no “golden method”
that always has higher-cost effectiveness than other testing
methods for all programs. Indeed, RT can be better than
ARTsum under some conditions, suchili§l in cases involving
high failure rates and short program execution time. In this
paper, we intend to provide a testing method for programs
that have non-numeric inputs requiring systematic analysis,
and that have long execution times. For such situations, it is
very likely that ARTsum is more cost-effective than RT.

7 RELATED WORK

The extension of ART to non-numeric input domains has
been of interest for some time. Ciupa et al. [11] demon-
strated the application of ART to unit testing of object-
oriented software. There are significant differences between
their approach and ours. Ciupa et al.’s dfffince measure,
which was specifically designed for unit testing of object-
oriented software, is based on the structure of method
inputs, and permits no tester discretion. Our distance mea-
sure, in contrast, allows testers to use their knowledge of
the specification and/or the program structure to specify
appropriate categories and choices. It is not restricted to
object-oriented languages, and is applicable beyond unit
testing. Ciupa et al.’s implementation uses FSCS-ART as
the test case selection technique. This technique’s quadratic
selection overhead implies that overall, ART might not
actually be cost effective compared to random testing. Our
technique, in contrast, takes advantage of the properties
of our distance measure to achieve linear-time selection
overhead, addressing these cost-effectiveness issues.

There have been a number of attempts to reduce the
selection overhead of ART, even before Arcuri and Briand
[3] drew attention to the implications of this for the prac-
tical use of ART. For instance, Shahbazi et al. [25] devised
RBCVT-Fast, a linear-time ART algorithm for d-dimensional
real input domains. Qur work is complementary to theirs in
that it can be applied to non-numeric input domains.

RT is of course not the only way to automatically gen-
erate test data; alternatives include model-based, symbolic
execution-based, and search-based testing methods. Com-
pared with RT/ART, these “more systematic” methods are
guaranteed to detect faults that violate specific properties
using, in many situations, fewer test cases. However, they
normally incur a very high cost in generating test cases;
for example, model checking based algorithms are often
exponential-time, which is é comparable to linear time
at all. In other words, the savings in the number of test
cases (and thus the savings in the test execution time)

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

Hs article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

may not be sufficient compensation for a much longer test
case generation time. In addition, no testing method is
guaranteo detect all types of faults. The “systematic”
methods may be very effective in detecting certain types of
faults, but they may also be very ineffective in the detection
of other faults. Random strategies (such as RT and ART)
can be considered to be complementary to them: due to
the randomness, random strategies can detect some faults
difficult to detect using systematic methods [4], [5], [17]. As
mentioned in Section 6, there is no “golden method”. Any
testing method has its own advantages and disadvantages,
dependent on various factors, in particular, the program
execution time which can vary enormously. The ARTsum
method proposed in this paper can be considered as a
possible cost-effective enhancement to RT and a good com-
plementary testing method to other systematic ones, when
the software under test involves non-numeric and struc-
tured inputs. ART is complementary to other systematic
testing methods not only because ART and other methods
can work independently to detect different types of faults,
but also because they can be integrated to provide hybrid
techniques. For example, ART has been used to improve the
test cases’ diversity in model-based testing [18]. It would
be worthwhile to systematically compare ART with other
state-of-the-art testing techniques, but such an experimental
comparison is beyond the scope of this paper (in which we
focus on how to improve RT) and is one important direction
for the future work.

There are some obvious parallels between some aspects
of combinatorial testing [23] and our ART algorithm. But
there are some fundamental differences. Combinatorial test-
ing has coverage as its underlying notion, and aims to de-
tect faults that are related to interactions between different
parameters. The underlying concepts of ART, in contrast,
are randomness and diversity across the input domain.
ART does not involve any form of coverage of specific
combinations of parameters, and combinatorial testing does
not involve randomness and diversity across the input
domain. From an operational perspective, ART normally
generates test cases in an incremental way, while combi-
natorial testing fundamentally requires the generation of an
entire test suite that satisfies certain coverage criteria, such
as t-way combinations. In other words, the combinatorial
testing has a lower bound on how manyZ#t cases should be
generated, while ART can generate any number of test cases
until a termination condition is satisfied. The incremental
nature of ART is actually an advantage over combinatorial
testing, especially when there are many factors that must
be considered in testing. For example, a complex system
(such as grep) can involve n functionalities, each of which
may be associated with m options and then p sub-options.
Such a hierarchy in inputs can result in a very large input
space. In addition, there may be an “explosion” in the input
space: The lower bound in test suite size of combinatorial
testing will increase exponentially as the values of m, n and
p increase. Our work addresses this “explosion” problem
by a simple method: The distance measure we proposed
treats the input space in two flat layers — the input space
is partitioned into different categories and their associated
choices. The numbers of categories and choices do not
necessarily grow with the increase of m, n, and p, and there

13

are common categories and choices across dif{f#§ht func-
tionalities, options, and sub-options. Even if the numbers of
categories and choices become larger with the growth of the
input domain, due to its incremental nature, ART does not
suffer from the input space “explosion” problem: ART im-
poses no rigid requirements on the test suite size no matter
how large the input space is. Such fundamental differences
make it extremely difficult, if not impossible, to compare
ART and combinatorial testing using the F-measure. The
measurement of P-measure had a similar problem: Both
RT and ART have high flexibility in test case generation,
making it possible to obtain P-measure values with various
test suite sizes; by contrast, combinatorial testing imposes
fixed test suite sizes.

8 CONCLUSION :

ART was proposed to enhance the failure-detection effec-
tiveness of RT. In this work we have presented a linear-
order ART algorithm, ARTsum, that makes use of a novel
distance measure, and takes advantage of the properties of
this distance measure to achieve a linear-order test case gen-
eration. Our work is complementary to the recent RBCVT-
Fast algorithm [25], which is an innovative linear-order ART
algﬁhm for numeric inputs.

We conducted an empirical study using a total of 14
programs, comparing our ARTsum algorithm with RT and
a baseline ART technique using the max-min criterion and
the technique of “forgetting” to reduce selection overhead,
namely ARTmfEfEach of the ART algorithms significantly
outperformed RT with respect to the F-measure for 10 of
the 14 object programs, was significantly outperformed by
RT for only one program, and had performance comparable
to that of RT for the remaining three programs. An almost
identical pattern was observed for the P-measure. Further-
more, the selection overhead of ARTsum was quite close to
that of RT, and far lower than that of ARTmif.

We have demonstrated a feasible and computationally
efficient scheme of linear order for applying ART to pro-
grams with non-numeric input types. We have shown that
ART can be used to efficiently perform debug testing on sev-
eral programs with non-numeric input domains. In doing
so, we address the cost-effectiveness issues raised by Arcuri
and Briand [3], permitting both fiflktical use and further
investigation of the behavior of FSCS-ART for programs
with very low failure rates. In this study, the emphasis
was on the delivery of a novel linear-order ART algorithm
and the demonstration of its practicality, so the question of
effectiveness with very low failure rates was not studied.
Obviously, further work is now called for to examine this
question. There is much scope for more &Janced distance
measures to take better account of more information about
the characteristics of the software under test, to better
predict similarity in failure behavior of inputs. Within the
general paradigm of categories and choices, there are many
potential refinements that could be attempted, such as
finer granularity of the distance measure, various weighting
schemes for categories and choices, etc. We believe that
finding appropriate distance measures for specific domains
will prompt much future research.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See httpy//www.ieee org/publications_standards/publications/rights/index. html for more

information.

'I'his“c]e has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2016.2547380,

IEEE Transactions on Computers

REFERENCES

[11 V. D. Agrawal. When to use random testing. I[EEE Transactions on
Computers, 27(11):1054-1055, 1978.

[2] P E. Ammann and J. C. Knight. Data diversity: An approach to
softweare fault tolerance. IEEE Transactions on Computers, 37(4):418-

4 88,
[3] A. Arcuri and L. Briand. Adaptive random testing: An illusion of
effectiveness? In Proceedings of the 20th International Symposium on

So| Testing and Analysis, ISSTA "11, pages 265-275, 2011.

[4] A. Arcuri, M. Z. Igbal, and L. Briand. Black-box system testing of
real-time embedded systems using random and search-based test-
ipe, In Proceedings of the 22nd IFIP WG 6.1 International Conference

esting Software and Systems, 1CTSS 10, pages 95-110, 2010.
[5] A. Arcuri, M. Z. Igbal, and L. Briand. Random testing: Theoretical
Its and practical implications. IEEE Transactions on Software
ﬁinwring, 38(2):258-277, 2012.

[6] K.-P. Chan, T. Y. Chen, and D. Towey. Forgetting test cases. In
ceedings of the 30th Annual International Computer Software and
plications Conference, COMPSAC ‘06, pages 485-494, 2006.

[7]1 T.Y. Chen, E-C. Kuo, and R. Merkel. On the statistical properties
of testing effectiveness measures. Journal of Systems and Software,
79(5):591-601, 2006.

[8] T.Y. Chen, F-C. Kuo, R. Merkel, and 5. . Ng. Mirror adaptive
random testing. Infornation & Software Technology, 46(15):1001-
1010, 2004. ﬂh

[9] T. Y. Chen, H. Leung, and 1. K. Mak. Adaptive random testing.
In Proceedings of the 9th Asian Computing Science Conference, pages
320-329, 2004.

[10] LY. Chen and R. Merkel. Quasi-random testing. IEEE Transactions

Reliability, 56(3):562-568, 2007.

[11] 1. Ciupa, A. Leitner, M. Oriol, and B. Meyer. ARTOOQ: Adaptive
random testing for object-oriented software. In Proceedings of
ﬁ 30th International Conference on Software Engineering, ICSE "08,

ges 71-80, 2008.

[12] M. E. Delamaro and J. C. Maldonado. Proteum — a tool for the

assessment of test adequacy for C programs. In Proceedings of the
erence on Performability in Computing Systems, PCS '96, pages
5, 1996.

[13] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact. Empiri ware Engincering: An International
Journal, 10(4):405-435, 200

[14] M. Friedman. The use of ranks to avoid the assumption of nor-
mality implicit in the analysis of variance. fournal of the American
Statiglal Association, 32(200):675-701, 1937.

[15] J. D. Golic. New methods for digital generation and postprocess-
ing of random data. IEEE Transactions on Computers, 55(10):1217-

, 2006.
[16] Gravetter and L. B. Wallnau. Statistics for the Behavioral Sciences.
t Publishing Company, 1996.

[17] A. Groce, G. . Holzmann, and R. Joshi. Randomized differential

testing as a prelude to formal verification. In Proceedings of the 29th
national Conference on Software Engineering, ICSE '07, pages
31, 2007.

[18] H. Hemmati, A. Arcuri, and L. Briand. Achieving scalable model-
based bestiﬁmugh test case diversity. ACM Transactions on
Software En, ing and Methodology, 22(1):6:1-6:42, 2012.

[19] S Holm. A simple sequentially rejective multiple test procedure.

ndinavian Journal of Statistics, 6:65-70, 1979.

[20] E-C. Kuo. On Adaptive Random Testing. PhD thesis, Faculty of

ﬁormation and Communication Technologies, Swinburne Uni-
rsity of Technology, 2006.

[21] Y. Liu and H. Zhu. An experimental evaluation of the reliability
of adaptive random testing methods. In Proceedings of the 2nd
International Conference on Secure System Integration and Reliability

Impmwmmr, SSIRI '08, pages 24-31, 2008.

[22] R. Merkel. Analysis and Enhancements of Adaptive Random Testing.

thesis, School of Information Technology, Swinburne Univer-

wof Technology, 2005.
ie and H. Leung. A survey of combinatorial testing. ACM
puting Surveys, 43(2):11:1-11:29, 2011.

[24] T.]. Ostrand and M. J. Balcer. The category-partition method for
spegifying and generating functional tests. Communications of the
A 31(6):676—686, 1988.

[25] A. Shahbazi, A. F. Tappenden, and |. Miller. Centroidal voronoi
tessellations — a new approach to random testing. IEEE Transac-
tions on Software Engineering, 39(2):163-183, 2013.

(23]

14
[26] The GNU Project. Grep home page. http://www.gnu.org/

are /grep, 2006.
[27] L.]. White and E. I. Cohen. A domain strategy for computer pro-
testing. IEEE Transactions on Software Engineering, 6(3):247-
1980.
[28] E Wilcoxon. Individual comparisons by ranking methods. Biomet-
Bulletin, 1(6):80-83, 1945.
[29] W. E. Wong,]. R. Horgan, S. London, and A. P. Mathur. Effect
est set minimization on fault detection effectiveness. Software:
tice and Experience, 28(4):347-369, 1998.
[30] B. Zhou, H. Okamura, and T. Dohi. Enhancing performance of
random testing through markov chain monte carlo methods. IEEE
Transactions on Computers, 62(1):186-192, 2013.

Arlinta Barus is a Lecturer at Del Institute of
Technology, Indonesia. She received her Bache-
lor degree in Informatics Engineering from Ban-
dung Ingtitute of Technology, Indonesia, Master
degree formation Communication and Tech-
nology from the University of Wollongong, and
PhD degree from Swinburne University of Tech-
nology. Her current research interest is mainly in
software testing.

97

Tsong Yueh Chen is a Professor at Swinburne
University of Technology. He received his PhD in
Computer Science from The University of Mel-
bourne, the MSc and DIC from Imperial College
of Science and Technology, and and MPhil
from The University of Hong Kon taught at
The University of Hong Kong and The University
of Melbourne. His main research interest is on
software testing.

Fel-CI& Kuo is a Senior Lecturer at Swin-
burne University of Technology, Australia. She
received her Bachelor of Science Honors in
Computer Science and PhD in Software Engi-
neering, both from Swinburne University of Tech-
nology, Australia. She was a | r at Univer-
sity of Wollongong, Australia. Her current re-
search interests include software analysis, test-

iﬁ and debugging.

Huai Liu is a Research Fellow at the Australia-
India Research Centre for Autgmation Software
Engineering, RMIT Universi stralia. He re-
ceived the BEng and MEng both from Nankai
University, China, and the PhD degree in soft-
ware engineering from the Swinburne University
of Technology, Australia. His current research
interests include software testing, cloud comput-
ing, and end-user software engineering.

Robert kel is a Lecturer at Monash Univer-
sity, M rne, Australia. He received his PhD
degree from the Swinburne University of Tech-
nology. His research interests include software
testing and software reliability.

Gregg Rothermel is Professor and Jensen
Chair of Software Engineering at the Universi
of Nebraska-Lincoln. He received the Ph.
Computer Science from Clemson University. His
research interests include software engineering
and program analysis, with emphases on the
application of program analysis technigues to
problems in software maintenance and testing,
end-user software engineering, and empirical
studies.

0018-9340 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. $ee hitpy//www.ieee.org/publications_standards/publications/rights/index. html for more
information.

A Cost-Effective Random Testing Method for Programs with
Non-Numeric Inputs

ORIGINALITY REPORT

20, 22, 244 .

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

.

researchbank.rmit.edu.au

Internet Source

Sy

E)

www.logicsystems.org.in

Internet Source

2

e

www.computer.org

Internet Source

2

=

syslog.co.in

Internet Source

1o

£l

researchbank.swinburne.edu.au

Internet Source

1o

Ali Shahbazi, James Miller. "Black-Box String
Test Case Generation through a Multi-
Objective Optimization", IEEE Transactions on
Software Engineering, 2016

Publication

1o

Arlinta Christy Barus, Tsong Yueh Chen, Fei-
Ching Kuo, Huai Liu, Heinz W. Schmidt. "The
impact of source test case selection on the

1o

effectiveness of metamorphic testing",
Proceedings of the 1st International Workshop
on Metamorphic Testing - MET 16, 2016

Publication

Chang-ai Sun, Hepeng Dai, Huai Liu, Tsong
Yueh Chen, Kai-Yuan Cai. "Adaptive Partition
Testing", IEEE Transactions on Computers,
2018

Publication

1o

Xiaofang Zhang, Xiaoyuan Xie, Tsong Yueh
Chen. "Test Case Prioritization Using Adaptive
Random Sequence with Category-Partition-
Based Distance", 2016 IEEE International
Conference on Software Quality, Reliability and
Security (QRS), 2016

Publication

1o

learning.acm.or
Internet Sougrce g < 1 %
www.cc.gatech.edu
Internet Sourga < 1 %
Rubing Huang, Huai Liu, Xiaodong Xie, Jinfu <1 y
Chen. "Enhancing mirror adaptive random °
testing through dynamic partitioning",
Information and Software Technology, 2015
Publication
Arcuri, Andrea, Muhammad Zohaib Igbal, and <1 o
(0]

Lionel Briand. "Random Testing: Theoretical

Results and Practical Implications”, IEEE
Transactions on Software Engineering, 2012.

Publication

"Test Case Prioritization of Configurable <1 o
Cyber-Physical Systems with Weight-Based °
Search Algorithms", Proceedings of the 2016
on Genetic and Evolutionary Computation
Conference - GECCO 16, 2016.

Publication
www.cs.iit.edu

Internet Source < 1 %

Elmin Selay, Zhi Quan Zhou, Jingjie Zou. <1 o
"Adaptive Random Testing for Image °
Comparison in Regression Web Testing", 2014
International Conference on Digital Image
Computing: Techniques and Applications
(DICTA), 2014
Publication
www.csis.hku.hk

Internet Source < 1 %

dfs.semanticscholar.or

Ilfw)ternet Source g < 1 %

Shabani, Hesam, Arman Roohi, Akram Reza, <1 o

Midia Reshadi, Nader Bagherzadeh, and
Ronald Demara. "Loss-Aware Switch Design
and Non-Blocking Detection Algorithm for Intra-

Chip Scale Photonic Interconnection Networks",
IEEE Transactions on Computers, 2015.

Publication

Lecture Notes in Computer Science, 2010.

Publication p <1 %
eprints.nottingham.ac.uk

IntErnet Source g < 1 %

B
N

menzies.us 1
<1%

Internet Source

B
w

Chang-ai Sun, Yufeng Ran, Caiyun Zheng, <1 o
Huai Liu, Dave Towey, Xiangyu Zhang. "Fault °
localisation for WS-BPEL programs based on

predicate switching and program slicing”,

Journal of Systems and Software, 2018

Publication

N
B

romisatriawahono.net
<1 %

Internet Source

E
&)

link.springer.com <1 %

Internet Source

www.klazz.net
<1 %

Internet Source

Chengying Mao, Xuzheng Zhan, T. H. Tse, <1 Y
Tsong Yueh Chen. "KDFC-ART: a KD-tree °
approach to enhancing Fixed-size-Candidate-

set Adaptive Random Testing", IEEE

Transactions on Reliability, 2019

Publication

www.cc.uah.es

Internet Source < 1 %
www.thomasalspaugh.or

Internet Source p g g < 1 %
leeecs-services.computer.or

Internet Source p g < 1 %
riuma.uma.es

Internet Source < 1 %

WWW.CS.arizona.edu <1 .
Internet Source A)
www.thelinuxtips.com

Internet Source p < 1 %

Chang-ai Sun, Yan Zhao, Lin Pan, Huai Liu, <1 y
Tsong Yueh Chen. "Automated Testing of WS- °
BPEL Service Compositions: A Scenario-
Oriented Approach", IEEE Transactions on
Services Computing, 2018
Publication
oa.upm.es

InternetpSource <1 %
www.naun.or

Internet Source g < 1 %

W. Eric Wong. "Does Adaptive Random Testing <1 0
Deliver a Higher Confidence than Random °
Testing?", 2008 The Eighth International
Conference on Quality Software, 08/2008
Publication
adt.lib.swin.edu.au

Internet Source < 1 %

fmmspg.appspot.com <1 .
Internet Source A)

rid.tsinghua.edu.cn

gternet Sourcge < 1 %
www.dcs.kcl.ac.uk

Internet Source < 1 %

Chen, Tsong Yueh, Fei-Ching Kuo, Huai Liu, <1 o
and W. Eric Wong. "Code Coverage of Adaptive °
Random Testing", IEEE Transactions on
Reliability, 2013.

Publication

TOWEY, DAVE. "ADAPTIVE RANDOM <1 o
TESTING", Adaptive Control Approach for °
Software Quality Improvement, 2011.

Publication
Chen, T.. "On the identification of categories <1 o
(0]

and choices for specification-based test case
generation”, Information and Software

Technology, 20041001

Publication

Xiaoyuan Xie, W. Eric Wong, Tsong Yueh <1 o
Chen, Baowen Xu. "Metamorphic slice: An °
application in spectrum-based fault
localization", Information and Software
Technology, 2013
Publication
crestweb.cs.ucl.ac.uk

Internet Source < 1 %
hub.hku.hk

Internet Source < 1 %
journal.frontiersin.or

JInterne’[Source g < 1 %
www.cv-foundation.or

Internet Source g < 1 %
arxiv.or

Internet Sourgce < 1 %

Shahbazi, Ali, Andrew F. Tappenden, and <1 o
James Miller. "Centroidal Voronoi Tessellations °
- a New Approach to Random Testing", IEEE
Transactions on Software Engineering, 2012.

Publication
users.encs.concordia.ca
Internet Source < 1 %

Linhai Ma, Peng Wu, Tsong Yueh Chen. <1 o
"Diversity driven adaptive test generation for °
concurrent data structures"”, Information and
Software Technology, 2018

Publication

Chengying Mao, Xuzheng Zhan. "Towards an <1 y
Improvement of Bisection-Based Adaptive °
Random Testing", 2017 24th Asia-Pacific
Software Engineering Conference (APSEC),

2017

Publication

Tsong Yueh Chen. "An upper bound on <1 o
software testing effectiveness”, ACM °
Transactions on Software Engineering and
Methodology, 06/01/2008

Publication

56 paris.utdallas.edu <1 o

Internet Source

57 mre.faculty.asu.edu <1 o

Internet Source

Jinfu Chen, Lili Zhu, Tsong Yueh Chen, Dave
Towey, Fei-Ching Kuo, Rubing Huang, Yuchi
Guo. "Test case prioritization for object-
oriented software: An adaptive random
sequence approach based on clustering",
Journal of Systems and Software, 2018

Publication

<1%

58

roar.uel.ac.uk

Internet Source < 1 %
sigsoft.or

E Integrnet Sourceg < 1 %
www.cs.hku.hk

Internet Source < 1 %
www.mouelhi.com

Internet Source < 1 %
ethesys.lib.fcu.edu.tw

Internet g:)urce < 1 %

Meimandi Parizi, Reza, Abdul Azim Abdul <1 y
Ghani, and Sai Peck Lee. "Automated test °
generation technique for aspectual features in
AspectJ”, Information and Software
Technology, 2015.
Publication

Christoph Schneckenburger. "An empirical <1 o
analysis and comparison of random testing °
techniques", Proceedings of the 2006
ACM/IEEE international symposium on
International symposium on empirical software
engineering - ISESE 06 ISESE 06, 2006
Publication
onlinelibrary.wiley.com

E Internet Source y y <1 %

Ellen Francine Barbosa. "Toward the 1
ane > I £7
determination of sufficient mutant operators
for C", Software Testing Verification and
Reliability, 06/2001
Publication
www.cse.unl.edu
E Internet Source < 1 %
utdallas.edu
E Internet Source < 1 %
Zhan-Wei Hui, Song Huang. "MD-ART: a test
| . <1
case generation method without test oracle
problem", Proceedings of the 1st International
Workshop on Specification, Comprehension,
Testing, and Debugging of Concurrent
Programs - SCTDCP 2016, 2016
Publication
centaur.reading.ac.uk
Internet Source g < 1 %
thinkmind.or
Internet Source g < 1 %
Shengfeng Wu, Yue Wu, Shiyi Xu. <1 o

"Acceleration of Random Testing for Software",

2013 IEEE 19th Pacific Rim International
Symposium on Dependable Computing, 2013

Publication

cs.stanford.edu

Internet Source < 1 %

atricklam.ca

Irn)ternet Source < 1 %

Liu, Xiao, Yun Yang, Yuanchun Jiang, and <1 o
Jinjun Chen. "Preventing Temporal Violations °
in Scientific Workflows: Where and How", IEEE
Transactions on Software Engineering, 2011.
Publication

T. Y Chen, F.-C. Kuo. "Is adaptive ran.dom <1 o
testing really better than random testing",
Proceedings of the 1st international workshop
on Random testing - RT '06, 2006
Publication

T.Y. Chen, R. Merkel. "Efficient and effective <1

: : . %

random testing using the Voronoi diagram”,
Australian Software Engineering Conference
(ASWEC'06), 2006
Publication
hunkim.cse.ust.hk

Internet Source < 1 %
air.unimi.it

E Internet Source < 1 %
d-nb.info

Internet Source < 1 %

hub.lib.ucy.ac.c

Internet Sourcey y < 1 %
tel.archives-ouvertes.fr

Internet Source < 1 %

Zhai, Ke, Bo Jiang, and W.K. Chan. "Prioritizing <1 o
Test Cases for Regression Testing of Location- °
based Services: Metrics, Techniques and Case
Study", IEEE Transactions on Services
Computing, 2012.
Publication

www.asmfc.org <1 .
Internet Source A)
www.knowledgebytes.net

E Internet Source g y < 1 %

Siavash Mirarab, Ladan Tahvildari. "An <1 o
Empirical Study on Bayesian Network-based °
Approach for Test Case Prioritization", 2008
International Conference on Software Testing,
Verification, and Validation, 2008
Publication
www.st.cs.uni-saarland.de

Internet Source < 1 %
ro.uow.edu.au

E Internet Source < 1 %

Matthew Patrick, Yue Jia. "KD-ART: Should we

intensify or diversify tests to kill mutants?",

Information and Software Technology, 2017 <1 Yo
Publication
www.ksi.edu

Internet Source < 1 %
seit.unsw.adfa.edu.au

Internet Source < 1 %

Huai Liu. "Adaptive random testing through test <1 o
profiles", Software Practice and Experience, °
2011
Publication

Saswat Anand, Edmund K. Burke, Tsong Yueh <1 o
Chen, John Clark et al. "An orchestrated survey °
of methodologies for automated software test
case generation”, Journal of Systems and
Software, 2013
Publication

Chen, T.Y.. "Distributing test cases more evenly <1 o
in adaptive random testing", The Journal of °
Systems & Software, 200812
Publication
R. Merkel. "Using the Information: Incorporatin

96 ° > I <1y

Positive Feedback Information into the Testing
Process", Eleventh Annual International
Workshop on Software Technology and
Engineering Practice, 2003

Publication

Tsong Yueh Chen. "Application of a Failure
Driven Test Profile in Random Testing", IEEE
Transactions on Reliability, 03/2009

Publication

<1%

Liu, Huai, and Tsong Chen. "Randomized
Quasi-Random Testing", IEEE Transactions on
Computers, 2015.

Publication

<1%

Zhou, Bo, Hiroyuki Okamura, and Tadashi
Dohi. "Enhancing Performance of Random
Testing Through Markov Chain Monte Carlo
Methods", IEEE Transactions on Computers,
2011.

Publication

<1%

Zhi Quan Zhou. "Using Coverage Information
to Guide Test Case Selection in Adaptive
Random Testing", 2010 IEEE 34th Annual
Computer Software and Applications
Conference Workshops, 2010

Publication

<1%

Tingting Yu, Ahyoung Sung, Witawas Srisa-an,
Gregg Rothermel. "An approach to testing
commercial embedded systems", Journal of
Systems and Software, 2014

Publication

<1%

Lecture Notes in Computer Science, 2013.

Publication

<1%

Alessandro Orso, Gregg Rothermel. "Software 1 y
testing: a research travelogue (2000-2014)", °

Proceedings of the on Future of Software
Engineering - FOSE 2014, 2014

Publication

Exclude quotes Off Exclude matches Off

Exclude bibliography Off

	A Cost-Effective Random Testing Method for Programs with Non-Numeric Inputs
	by Arlinta Barus

	A Cost-Effective Random Testing Method for Programs with Non-Numeric Inputs
	ORIGINALITY REPORT
	PRIMARY SOURCES

