
Testing of A Grade Calculation Program: A Case Study of

Metamorphic Testing
Arlinta Christy Barus1), Rich Simamora2), Hanna Tobing3), Sumiati Hutagalung4)

Politeknik Informatika Del

Desa Sitoluama, Laguboti, Kabupaten Tobasa 22381, Sumut, Indonesia

{1)arlinta3),hanna, 4)sumiati}@.del.ac.id, 2)if09015@students.del.ac.id

Abstract—Metamorphic Testing (MT) is

a testing method that involves input,

output, and relation between the input

and output of a program under test that

generated by relationships of the program

known as called metamorphic Relations

(MRs). The inputs are used to generate

new inputs and to be checked whether it

is appropriate with the functional

relationships of the relevant MR. The

application that is used as a case study in

this paper is a program to calculate

grades of students as a part of Academic

Information System of Del Polytechnic of

Informatics. After testing the application,

it is proven that MT was able to reveal

failures. If failure of case study is

revealed, the oracle problem of case study

is reduced. MRs that are used in this

paper are considered to be still simple.

Therefore, the authors will conduct more

study to generate more complex MR to

reveal more failures.

Keywords—Software Testing, Metamorphic Testing

(MT), Oracle problem, Metamorphic Relation (MR)

I. INTRODUCTION

There are two problems in software testing,

reliable test set problem and oracle problem

[1]. Reliable test set problem is a problem

where the tester never be able to find a

subset of the input domain that can represent

the whole input domain except the whole

input domain itself. In this paper, we will

focus on the oracle problem. An “oracle” in

software testing is a procedure by which

testers can decide whether the output of the

program under testing is correct. [2]. In

some situations, the oracle is not available or

too difficult to apply. This is known as the

"oracle problem" [2]. That situation may be

caused by the complexity of the software to

be tested or the number of input domains are

too large to be tested so it is not possible to

test all possible inputs (input domain). Input

domain is a range of input fields of software

under test.

The oracle, generally, is not available in the

program that implements a mathematical

function. The mathematical functions are

normally implemented by complex

algorithms so it is difficult to verify the

output manually and hard to find the tools

that can check the truth of the output

program. The difficulty is known as the

“oracle problem”.

Metamorphic testing (MT) is a testing

method developed by Chen et al to alleviate

the oracle problem [3]. In MT involved

variety of inputs and outputs that can be

used as a reference. Relation in MT is called

metamorphic relations (MR) [4]. By making

use the information from the executed test

cases, MR is used to generate the follow-up

test cases and to validate the compute

outputs of the software [4].

In this paper, the application that is used as a

case study to applying the MT is a program

to calculate grades of students as a part of

Academic Information System of Del

Polytechnic of Informatics The functions

contained in this case study involve a

computational process that needs to be

proven whether the results is true or not.

Checking the results of computing manually

will be too difficult and inefficient.

Therefore, the author will use the MT for

reducing the oracle problem. The use of MT

is done by generating a lot of MR to

strengthen testing. MR will be applied on a

small program that will be used to test case

study directly.

This paper is presented in the following

sections: a literature review, a description of

case studies that will be reviewed, analysis,

experimental design, results and discussion

and conclusion.

II. LITERATURE STUDY

There are two problems in software testing,

Reliable Test Set Problems and Oracle

Problem [1]. Reliable Test Set Problem is a

problem when the tester never found a

subset of the input domain that can present

domain input except the input domain.

For example: P is a program. D is a domain

input (all possible input values for P). After

testing P using all input D and no failure is

found, then P is a correct program. We need

to find a reliable test set T with T is a subset

of D, and if P (T) is true, then P (D) is

correct. Problem: T is unlikely to be

achieved unless T = D, known as the

Reliable Test Set problem.

Oracle problem is a problem when the tester

difficult to determine whether the output of

a program is correct or not. The problem is

caused by the complexity of the input

domain to be tested. Input domains are all

inputs that may be used for a program. Test

oracle is a mechanism by the tester to

determine if there is a failure in a program

or not, by comparing the expected output

with the actual output [9]. One of the

software testing techniques that try to solve

problems by applying a test oracle is

metamorphic testing (MT).

Oracle Problem is a problem that will be

discussed in this paper.

A. EXAMPLE OF ORACLE TEST

PROBLEM

One of oracle problem occurs in the search

engines. An example occurs in Google with

the address www.google.com. On the

Google page, enter input 'ACM

Transactions'. In accordance with the

existing specifications on Google, spaced

typed recognized as relations 'AND'. The

system will return about 8,660,000 results

for these searches. How can testers

determine the correct output of very much

result according to the words the user

entered? Suppose again, a user inputs „ACM

Transactions “World Wide Web”‟.

According to specifications of Google,

quotation marks ("") means the search will

return results that match with words in

quotation without split. System will return

about 834.000 results. How can testers

determine that just 834.000 pages are

relevant to the inputs? It is known as the

oracle problem [11].

B. METAMORPHIC TESTING

Metamorphic testing (MT) is a testing

method developed by Chen to alleviate the

oracle problem [3]. Metamorphic testing is a

technique to generate follow-up test cases

based on existing test cases (test case

source) that have not reveal any failure.

Follow-up test cases generated by making

reference to "metamorphic relations" (MR)

[2]. Metamorphic Testing verify

metamorphic relation of the functions that

contained in the program that being tested

[10].

By the concept of Metamorphic Relation

have some characteristics below. First, MR

is an important property of the function to be

tested. If one of the properties of functions is

not satisfied during the test, the program

called p can be said as the wrong program.

Second, a metamorphic relation is a

relationship between the source input with

the follow-up input and source output with

the follow-up output of a function that the

relationship is going to be tested. If the

relationship is not satisfied, it can be said

that the tested function contained an error.

For example, the sine function has a

property that can be used for some inputs

such as x1 and x2, if x1 + x2 = π, then sin

(x1) = sin (x2). x1 is the source input and x2

is the follow-up input. If the sine function is

run with x1 and x2 as input and found that

the output is not equal, it can be said that the

function is contain errors [10].

III. CASE STUDY

In this paper, the real application that will be

used as a case study to applying the MT is a

program to calculate grades of students as a

part of Academic Information System of Del

Polytechnic of Informatics. The Academic

Information System of Del Polytechnic of

Informatics is a system used to display

academic information in Del Polytechnic

Informatics. In addition, the system also has

a feature to count the grade of all students.

The program to calculate grades of students

as a part of Academic Information System

of Del Polytechnic of Informatics has a

function that process and display the data

related to all grades of students. Processing

student‟s grade involves many calculation

processes so it is difficult to check the

results of the processing manually,

especially for a lot number and variety of

data. It is not efficient that the tester must

check the output one by one. This is the

oracle problem of this case study.

IV. DESCRIPTION OF THE FUNCTIONS

TESTED

This part explains the analysis of the

functions on case studies.

- AddKomposisi Function (component,

weights)

This function is used to insert the

components and weights of each course by

teacher of each course.

- AddRentangNilai Function (IndeksNilai)

This function aims to provide an grade index

for each subject.

- AddNilai Function (Nim, GradeValue)

This function aims to put the grade value by

students NIM (student‟s ID) into each

component of certain subjects.

- HitungTotalNlai Function (KODE_MK)

This function aims to calculate the final

grade value of each component on the

subject by multiplying weight with the grade

value per component.

- GenerateGrade Function

(FinalGradeValue)

This function aims to generate the grade of

each course based on the final grade of the

course.

- HitungNilaiRata Function (NIM, SEM)

This function aims to calculate IP

(performance index). The output of this

function is IP of students.

- Function hitungIPK (NIM, TotalSem)

This function aims to calculate the GPA

(Grade Point Average) of students.

- SelisihTertinggi Function (IP2, IP1)

This function aims to generate the highest

difference of IP even and odd semesters.

The output is the student‟s name that has the

highest difference of IP even and odd

semester.

- GenerateCumlaude Function (IP)

This function aims to generate student data

were obtained the cum laude. The output is

the name of the student who obtained the

cum laude.

- GenerateBeasiswa Function (IP)

This function aims to generate student‟s data

that receive scholarships.

By all of above functions that used for

calculating the student‟s grade, the chosen

function to be tested is a function that has

complex computing process, there are:

HitungNilaiRata function (NIM, SEM) as

Fungsi1, HitungTotalNlai (KODE_MK)

Function as fungsi2, Function hitungIPK

(NIM, TotalSem) as Fungsi3

A. METAMORPHIC RELATION

This part describes the metamorphic

relations that generated for the case study.

Here is the explanation of each MR that

forms by the relationship between the

features of grade calculation program.

- 1
st
 Function - hitungNilaiRata (NIM, SEM)

1. MRSik1 = "if gradeSource>

gradeFollow on SKScourseSource =

SKScourseFollow then IPSource>

IPFollow". The gradeSource is variable

to source input and gradeFollow is

variable grade to follow-up input.

Constraint: the same grade for the other

courses.

2. MRSik2 = "if gradeSource

<gradeFollow on SKScourseSource>

SKScourseFollow then IPSource

<IPFollow".

Constraint: the same grade for the other

courses.

3. MRSik3 = "if gradeSource

<gradeFollow on SKScourseSource =

SKScourseFollow then IPSource

<IPFollow".

Constraint: the same grade for the other

courses.

- 2
nd

 Function - hitungTotalNlai

(KODE_MK)

The MR that used to test this function is the

relation between the components, weight per

component, and the grade value of a

component that will affect the final grade

per subject. MR that generated for this

function is:

1. MRSik5 = "if gradeSource >

gradeFollow on

componentWeightSource =

componentWeightFollow, then

FinalGradeSource >

FinalGradeFollow".

Constraint: the same grades for other

components and subjects to be tested

must have at least two components with

different weights.

2. MRSik6 = "if gradeSource <

gradeFollow on

componentWeightSource >

componentWeightFollow, then

FinalGradeSource <

FinalGradeFollow".

Constraint: the same grades for other

components and subjects to be tested

must have at least two components with

different weights.

3. MRSik7 = "if gradeSource>

gradeFollow on

componentWeightSource <

componentWeightFollow, then

FinalGradeSource >

FinalGradeFollow".

Constraint: the same grades for other

components and subjects to be tested

must have at least two components with

different weights.

- 3
rd

 Function - HitungIPK (NIM, TotalSem)

The MR that used to test this function is the

relation between the IP and the number of

credits that will affect GPA. MR that

resulted from this relation is:

1. MRSik8 = "if IPSource> IPFollow on

totalSKSSemesterSource =

totalSKSSemesterFollow then

IPKSource > IPKFollow".

Constraint: the same IP for the other

one and have more than one semester.

2. MRSik9 = "if IPSource > IPFollow on

totalSKSSemesterSource >

totalSKSSemesterFollow then

IPKSource > IPKFollow"

Constraint: the same IP for the other

one and have more than one semester

but the number of credits is not same.

3. MRSik10 = "if IPSource > IPFollow on

totalSKSSemesterSource <

totalSKSSemesterFollow then

IPKSource <IPKFollow".

Constraint: the same IP for the other

one and have more than one semester

but the number of credits is not same.

 V DESIGN AND EXPERIMENTS

A. MR IMPLEMENTATION

The testing for Fitur Penghitung Nilai of the

Academic Information System of Del

Polytechnic of Informatics does not fully

automatically.

This is because Fitur Penghitung Nilai

involves two different applications. The first

application is a small program that was built

with the programming language PHP. This

small program is used to test the relation

between input and output source with input

and output follow-up whether it meets the

MR. The second application is Microsoft

Office Excel package, used to generate the

random input and then made them in to CSV

form file. Inputs that have been raised are

used to test Fitur Penghitung Nilai to be able

to produce output with a particular function.

B. MUTANT GENERATION

Mutant is a program that is seeded an

error intentionally. Process of giving an

error on the original program should be able

to insert automatically through mutant

operator. Selection of mutant operator is

done randomly and independently [13].

However, due to time limitations in this

paper the addition of mutant performed

semi-automatically. Selection of mutants

made randomly / done by the programs, but

implementation at the program under test is

done manually.

In this paper, the mutant is adding to

Fitur Penghitung Nilai. Giving mutants Fitur

Penghitung Nilai was done because in his

original program testing, failure was not

found. Mutants that are used to test Fitur

Penghitung Nilai were added to the function

to be tested. Every function has several

mutants with specific versions.

Types of mutations using in this paper is

the operator mutation. Operator mutation

means the addition of the mutant to the

original program by changing the existing

operators of the program. Types of operators

that will be modified on this TA is the

arithmetic operator like "+", "-", "*" and "/".

Each operator will be replace by "+", "-",

"*", or "/".

If there are several operators in the

function to be tested, each operator will be

replaced with very operator in his own

range. The selection operator which will be

used to the program is based on the results

of random mutant operators. Mutant

operator is a small program / console

application built using Java programming

language. Outputs of the application are the

operator will be changed and what will

change it.

The author record the results then applied in

the program. Each function to be tested was

given five different mutants. Each mutant

only changes one operator.

C. METRIC

Metric is a measure used to measure off the

success of an experiment. The expected

result in software testing is the ability to

reveal the failure. In MT, the success reveal

failure occurs when the output source test

cases and the output follow-up test case does

not meet the MR relation. In this case, it can

be concluded that the experiment was

successfully.

When failure is not revealed, there are two

possible causes. Firstly MR is ineffective to

uncover failure (too simple) or the

application under test is already quite good

(free of failure). In this condition, the next

step is proving the possibility by adding

mutant to the program.

Program mutants tested again using the

same relation to the MR. If the failure

successfully revealed it can be concluded

that the actual MR is effective to reveal the

failure. No revealing failure in the

experiment because the application is the

correct one. But when failure is not

successfully revealed by the mutant

program, it proves that MR is not effective

to expose the failure.

VI RESULTS AND DISCUSSION

Tests were implemented on Fitur

Penghitung Nilai of the Academic

Information System of Del Polytechnic of

Informatics performed on mutant program.

This is because the failure in the original

program is not reveal, so insert the mutant is

needed. The test results of the application

using MR in every function can be found in

[12].

Experiments to the third function hitungIPK

were done by inserting the code for MR8

only. In Chapter III, there are three MR they

are MR8, MR9 and MR10 as

implementation of this function. However,

the MR9 and MR10 cannot be inserted

mutants because there are code errors on the

program so the GPA for more than one

semester cannot be correctly calculated

using Fitur Penghitung Nilai. This is

because IP does not affect GPA.

A ANALYSIS OF TEST RESULTS

This section describes the analysis of the

results of experiments conducted to the case

study. An analysis of the experiments result

performed using XLSTAT tools. Tools are

used to compute analysis of variance

(analysis of variance) and analysis of the

differences between the categories by using

the 95% confidence interval. The value of

the confidence interval is a confidence value

which is used in XLSTAT.

The analysis conducted on the MR

function aims to find the most suitable

among all MR for use in testing the

function. The analysis conducted on the

application aims to find the most appropriate

MR among all the MR.

The analysis of this case study is divided

into two types based on functionality and

MR analysis of the overall application. After

doing the calculations using XLSTAT the

results of calculations using ANOVA and

grouping categories confidence interval can

be seen in the description below.

B TEKNIK ANALISIS ANOVA

ANOVA calculations performed for

functions that have more than one MR in

order to analyze the average - the average

population of the different groups who have

different treatments - also vary based on

experiments that have been done before.

Therefore, technical analysis cannot be

performed on HitungIPK() function because

MR is used only one so that the data of the

experimental results are homogeneous or

similar.

Grouping Categories Based on 95%

Confidence Intervals

Grouping Categories is done to get the

category for each MR of every function and

overall functions on a case study based on

experiments that have been done before.

Grouping can be seen in [12].

VII CONCLUSIONS AND

RECOMMENDATIONS

There are the conclusions obtained for this

paper.

After testing in both case studies and see

the results of experiments, it turns out that

MT method was able to generate MR that

can be applied to reveal the failure.

The small program that is used to assist

the experiments is able to applying MR to

reveal failure.

When failure is not revealed in the

experiments, there are two causes that occur,

they are MR is used to expose the failure is

not effective (too simple) or the application

under test is already quite good (free of

failure). In this condition, the next step to do

to prove it is adding mutant into the

program.

After doing experiments and failure revealed

in the case studies the oracle problem in the

case study is reduced. MR is used in this

paper is a simple MR. Therefore, the authors

hope that further development can generate

more complex MR so the failure that

revealed more and more.

REFERENCES

[1] Barus Arlinta Christy, ”An In-depth Studi of Adaptive Random

Testing for Testing Program with Complex Input Types”, Ph.D.

dissertation, Swinburne University of Technology, 2010.

[2] Zhou Zhi Quan, Huang D. H., Tse. T. H., Yang Zongyuan,

Huang Haitao, dan Chen T. Y., ” Metamorphic Testing and Its

Applications” , 2004.

[3] T. Chen, S. Cheung, and S. Yiu. Metamorphic testing: a new

approach for generating text test cases. Technical Report HKUST-

CS98-01, Department of Computer Science, Hong Kong

University of Science and Technology, Hong Kong, 1998.

[4] Barus Arlinta Christy, T. Y. Chen, D. Grant, F.C Kuo and M.F.

Lau ” Testing of heuristic methods: A case study of greedy

algorithm”, in In Proceedings of the 3rd IFIP CEE Conference on

Software Engineering Techniques(CEE-SET 2008).

[5] Hetzel, W. (1973) Program Testing Method, Prentice-Hall.

[6] IEEE(1983) IEEE standard for software testing documentation,

IEEE Std 829-1983.

[7] IEEE(1990) IEEE standard for software testing documentation,

IEEE Std 610.12-1990.

[8] Pfleeger, S.L.(2001) Software Engineering: Theory and

Practice, 2nd ed. Prentice-Hall.

[9] ”Software Testing”, diakses pada tanggal 09 Januari 2012 dari

http://en.wikipedia.org/wiki/Software_testing.

[10] Chen, Tsong Yueh, Ying Liu, dan Antony Tang, Metamophic

Testing and Testing with Special Values, Swinburne University of

Technology, Australia.

[11] Zhou Zhi Quan, Tse T. H., Kuo F. –C., Chen T.Y.,

“Automated Functional Testing of Web Search Engine in the

Absence of an Oracle”, 2007.

[12] Rich, Hanna, Sumiati, “Penerapan Metamorphic Testing (MT)

Studi Kasus: Fitur Penghitung Nilai Pada Sistem Informasi

Akademik Politeknik Informatika Del dan Aplikasi Tebak

Kendaraan”, Laporan Tugas Askhir Politeknik Informatika Del,

2012

[13] Agrawal, H., DeMillo, R.A., Hathaway, R., Hsu, W., Hsu, W.,

Krauser, E.W., Martin, R.J., Mathur, A.P., Spafford, E.H. : Design

of mutant operators for the C programming language. Technical

Report SERC-TR-41-P, Software Engineering Research Center,

Purdue University, West Lafayette, Indiana, USA (March 1989).

http://en.wikipedia.org/wiki/Software_testing

