
2015 International Conference on Automation, Cognitive Science, Optics, Micro Electro-Mechanical System, and Information Technology
(ICACOMIT), Bandung, Indonesia, October 29–30, 2015

978-1-4673-7408-8/15/$31.00©2015 IEEE
145

Mobile Game Testing: Case Study of A Puzzle Game
Genre

Arlinta Christy Barus, Roy Deddy Hasiholan Tobing, Dani Novita Pratiwi, Siska Adelina Damanik, Jenny Pasaribu
Faculty of Informatics Engineering and Electro

Del Institute of Technology, Laguboti, Indonesia
Email: arlinta@del.ac.id

Abstract—The advancement of mobile technologies allows
developers to build more sophisticated application specifically
mobile game. As the result, mobile game has more complex
gameplays and incorporates more complex resources, such as 2D
images, 3D objects, artificial intelligence, sounds, and many
more. Developers are spoilt by the vast number of available game
engines that enable rapid mobile game development. However,
the mobile game source codes that orchestrate all the
interconnected resources are also getting large in the size and
eventually leading to difficulties in tracing bugs in the codes.
Meanwhile, software testing is still a growing area that, despite
vary proposed techniques to identify errors in source code have
been developed, yet it has to consider more studies in mobile
game category. This research aims to conduct an appropriate
testing on a mobile game application. We choose to test an
awards-winning mobile game using an available testing tool,
named Unity Test Tool. The tool is explored during this study
and then applied to test the game that of puzzle genre. At the end
of the study, the research finds that the game is faults/bugs-free.

Keywords—mobile game testing; Unity tools; unit test

I. INTRODUCTION

Mobile application has specifically been designed and
developed for devices that have more limited resources
compared to personal computers or laptops [1]. Mobile
application, that is also more well known as “app”, runs on
devices that are so-called smartphones or tablets which
relatively have smaller screen size, processor speed, memory
capacity, internal storages, and mostly have on-screen
keyboards. Available apps can be used to play music, watch
movies, set timers, send emails, call friends, and for various
more serious purposes such as education, productivity,
medical, shopping, and entertainment. In entertainment
section, game is one of the most favorite categories.
According to recent Quartile 1 (Q1) 2015 surveyed by
Mobomarket, game is the most downloaded mobile app,
which has 45.61% shares, followed by social and photography
categories [2]. Moreover, the size of game industry is very
large that in US alone. It is predicted that mobile game
revenue will reach 3.31 billion US dollars in 2016. The
number has been raised up from about 2.03 billion in 2013
[3]. The large scale of mobile game market and revenues
eventually attracts more game developers. Mobile game rapid
development method is used to develop and deliver ready-to-

play game application in relatively short time. The method
involves game engines in the process of game implementation.

Game engine allows developers to build a mobile game
rapidly as the software has been already equipped with the
building blocks for mobile game app, such as collision and
physics resources, 3D game assets, game renderers, artificial
intelligence, visual effects, sounds, and other sub systems. The
game developer can tailor the available assets from the game
engine, develop, and add specific resources to the games, and
finally bind them by writing program codes. However, the
developers need to make sure the game can be distributed,
deployed in the users’ gadgets and run smoothly without
errors or bugs. This requires a mobile game testing process.

In general, software testing is a set of activities conducted
to evaluate the quality of the product from the software
requirements perspective. The software under test must
provide all the already defined functionalities or capabilities,
match the required workflows or algorithm, and return no
errors. IEEE Standard for Software Test Documentation [4]
emphasizes that testing is a process to detect the difference of
developed software and the features requirements for that
software. Two commonly used approaches for testing process
are black-box testing and white-box testing [5]. However, the
approach to test a mobile game can be different from the
common software. Generally, software has functions that
whenever be executed, the users can expect the results will be
similar linearly. In contrast, mobile game usually comprises of
interacting sub systems and continuous game loop. Hence, the
results can be different for each playing session whenever the
user gives inputs to the game. This situation can be noticeably
experienced from game with artificial intelligence and applies
physics laws to the gameplay.

 In this research, the authors conduct a series of activities
for mobile game testing. The testing process uses a both
nationally and internationally awarded mobile game, XYZ, as
a case study. The game was developed by the authors’
university business unit and of the puzzle genre. As the game
was built using Unity game engine [6], the study utilizes the
testing tools equipped in the engine, named Unity Test Tools.
The testing package has three testing components, which are
Assertion Explorer, Unit Test Runner, and Integration Test
Runner [7]. This research focuses on the mobile game unit
testing and makes use of Unit Test Runner of Unity Test
Tools. The reason is that XYZ source code has never been

146

tested in a proper manner prior to its participation to the
competitions. Unit testing will reveal if there exist errors in
structural level of the code. To achieve the results, the
research is conducted systematically by:

 Gathering information activities for the testing process
references. The objective of this phase is to have better
comprehension on testing process in general, mobile
game testing, and the testing approaches and tools. The
collected information is in form of journal or
conference papers, and articles from the Internet.

 Exploring activities to familiarize the authors Unity
game engine, Unity Test Tools, and the case study
subject. During this step, the authors also conduct
testing on a small scale mobile game.

 Testing hands-on for the case study subject. This third
step applies collected knowledge from the previous
steps.

The following section gives the literature study related to
this research. Section III presents detail experiments
conducted in this study. Results of the experiment along with
some discussion are presented in Section IV. Last section
gives the conclusion of the study.

II. LITERATURE REVIEW AND TOOLS EXPLORATION

A. Mobile Game

Game is different from software in general. Game
comprises of many interacting sub systems which run
continuously during the game is played by users. It is called
game loop. Meanwhile, mobile game can be defined as
“embedded, downloaded, or networked games conducted in
handheld devices such as mobile phones, portable consoles,
and PDAs” [8]. The definition itself implies the game
characteristics. The examples of mobile games are Angry
Bird, Candy Crush Saga, Clash of Clans, and Teka Teki Saku.
The games can be deployed in Android and iOS smartphones
platforms. To develop a mobile game rapidly, developers may
use game engines. According to Gregory [9], game engine
refers to “software that is extensible and can be used as the
foundation for many different games without major
modification”. The typical game engine architecture is shown
by Fig. 1.

There are several techniques that can be applied for game
testing, such as [10]:

1) Combinatorial Testing. The technique aims to discover
defects by using small test sets. In this technique, the
individual elements are included in the test, and then create
homogenous and heterogeneous testing types.

2) Test Flow Diagrams. In this technique, the game
behaviors from the users’ perspective are modelled into
graphical representation. The testing process by exercising and
exploring the possible paths is depicted in the model that
comprises of flow, events, actions, states, primitives, and
terminators elements.

3) Cleanroom Testing. The testing process in this
approach is conducted by testing the game based on the
assumptions of how the players will play the game. The test
cases are generated based on the data of users’ tendencies.

4) Test Trees. In this testing technique, tree structures of
the game features are documented and decomposed into test
cases.

5) Play Testing and Adhoc Testing. These are less
structured test ing techniques by having the targeted
players of the game are recruited, play the game and give
feedbacks, mostly on the topic of game balance and difficulty.
The test method also allows the testers to intuitively explore
the game [11]. Several play testing services are available at the
Internet, such as Playtest Cloud [12] that applies
crowdsourcing method in the process or Playtextix [13] which
has setup the test implementation stages.

Meanwhile, the types of testing methods specifically for
mobile game testing that have been developed are: functional
testing, compatibility testing, performance testing, localization
testing, regression testing, and load testing [14].

Fig. 1. Typical Game Engine Architecture [9].

For this testing research, XYZ mobile game is used as the
case study subject. XYZ is an award-winning mobile game
developed by the authors’ university business unit. The puzzle
game has never been tested in a formal way by the developers.
Hence, this research is to help the developers to find faults in
the source code in a good manner. This game has gameplay in
which the players are expected to finish more than 80 stages
and aim to get highest score. In each stage, the players can win

147

the game by removing trash from a lake. The actor of the
game is a fish from local species that has a bubble gun to lift
garbage from the lakebed. In the attempt to clean the lake, the
players can face challenge from the obstacles set in each game
stage. The snapshot of the game is available in Fig. 2.
Additional information about XYZ mobile game is:

 The mobile game is exported to Android platform with
2.3.1 (API 9) as the minimum version. The file size is
approximately 38.21 MB.

 The latest version of the game is 1.3.0.

Fig. 2. XYZ mobile game.

B. Unity Game Engine and Unity Test Tools

In this research, the authors have tools exploration to get
more knowledge on Unity game engine and its test tools. The
knowledge is used to develop test case and apply testing
methods that are supported by the testing tools. The process of
tools exploration can be seen in Fig. 3.

Fig. 3. Tools exploration workflow.

Unity is a commercial game engine used to develop game
for web, desktop and mobile platforms. Developers use Unity
to work on the gameplay. Meanwhile for writing the game
source code, Unity has editor such as MonoDevelop. During
the development process, the developers write the code
without concern on the platform types. After the code is
written, the developers can export the game into particular
platform [15]. Unity has packages that can be downloaded to
enhance its capabilities. One of the game engine packages that
can be used for testing purpose is Unity Test Tools [16]. The
tools can be used to have combinatorial testing and have three
testing components that can be used to discover mobile game
bugs, which are:

1) Integration Test Framework. The component allows the
users to automate the assets verification and test the assets
behavior or the interaction between the assets.

2) Assertion Component. This visual component is used to
confirm the states of various game objects.

3) Unit Test Runner. The component integrates NUnit
framework with the editor and le the developers to execute
unit testing in Unity. The component provides test runner for
execute test case and report the results. The following Fig. 4
shows Unity Test Tools with Unit Test Runner component.

Fig. 4. Unity Test Tools.

III. THE EXPERIMENTS

Before carrying out the study, the tool exploration has
been performed by having Angry Bird game clone source
codes downloaded from the Internet [17] and makes it as the
test subject. The testing process must follow rules which are:

1) Test class should use [TextFixture] tag.
2) Each test method has to have [Test] tag.
3) Each test has to contain three components:

a) Arrange: Variable initialization for tested data.

b) Act: Invoke the code from the tested game.

c) Assert. Comparison method for evaluating whether
the tested function is accepted or not.

The code in Fig.5 is the example of Angry Bird Clone
source code that has been modified using the abovementioned
rules in order to generate test case. After applying the rules to
the source code, the next steps are:

 Instantiate the tested Pig class.

 Initialize the Health variable value to be 160f.

 Call the tested method, which is Start method.

 Use Assert.AreEqual function to check if the
expected result equals the real result, which is 130f
(160f - 30f).

using System;
using System.Collections.Generic;
using System.Threading;
using NUnit.Framework;
using UnityEngine;

namespace UnityTest
{

148

 [TestFixture]
 internal class SampleTests
 {
 [Test]
 [Category("Success")]
 public void SuccessTest()
 {
 var pig = new Pig ();
 pig.Health = 160f;
 pig.Start ();
 Assert.AreEqual(130f,
pig.Health);
 }
 }
}

Fig. 5. A part of Modified Angry Bird Clone Source Code.

The environment for testing process is as follows:
1) Hardware specification

a) Processor: Intel Pentium 4 Core i3.

b) Memory: 4.00 GB RAM.

c) Hard disk: 500 GB.

2) Software specification
a) Operating system: Windows 7 Professional.

b) Tools: Unity, Unity Test Tools, MonoDevelop.

c) Programming Language: C#.

IV. RESULTS AND DISCUSSIONS

XYZ mobile game building blocks has several
components, which are: (a) Rigidbody, to manage the
gravitation attributes of an object, (b) Box/Sphere
Colider, to create the physical surface of the game objects,
and (c) Script, to define the methods of each object. For the
testing process, the following program classes are set up to be
the test class:

1) GelembungController. The class is for creating
graphical effects, managing the physical behavior of the
actor’s weapon. The class has 21 methods.

2) PoraController. The class is for creating graphical
effects, managing the physical behavior of the game actor. The
class has 12 methods.

3) PenghalangController. The class is for creating
graphical effects, managing the physical behavior of the game
obstacles. The class has 7 methods.

4) SampahController. The class is for creating
graphical effects, managing the physical behavior of the lake
trashes. The class has 10 methods.

After reviewing each class and method, there are six
methods prepared as the test cases. The criteria for selecting
the methods is based on the fact that other methods interact
with game engines sub systems to render images, sounds and
provide artificial intelligence. Hence, the methods are not
easily tested using the Unit Test Tools because the
dependency with other game resources and results domain is
very large. The process of testing the test cases is shown in

Fig. 6. From the testing results, the authors can conclude that
the methods are bugs free (marked by the green checkmark).

Fig. 6. Test cases run on Unity Test Tools.

During the testing process, the authors also tried to test
whether the test case is reliable by entering inputs that do not
match for the required condition. We found out that the Unity
Test Runner shows the tested methods are error or not bugs
free. The depiction can be seen in Fig. 7 (marked by red
circle).

Fig. 7. Test cases run on Unity Test Tools With Errors Condition.

V. CONCLUSION

In this research, a mobile game testing is conducted using
Unity Test Tools on XZY mobile game. In the process, it is
found that not all methods in the source code can be easily
tested. The nature of mobile game software that consists of
interacting sub systems makes several methods cannot be
separated for unit testing purpose. For future work, we suggest
to study further about mobile game testing as there have not
been many research works conducted on mobile game testing
yet. There are still many aspects of mobile game testing that
can be investigated further because of the unique properties of
mobile game application compared to other common software.
As this study has been merely explored unit testing of mobile
application which is included as a functional testing method,
other testing methods can be further explored in the future,

149

such as compatibility testing, performance testing, localization
testing, regression testing, and load testing.

REFERENCES

[1] I. Wigmore, ”Mobile app.” Internet:

http://whatis.techtarget.com/definition/mobile-app. Dec. 2013, [Jun. 1st,
2015]

[2] MoboMarket, “Q1 2015 Indonesia mobile data report based on
MoboMarket users data research,” Internet:
http://www.slideshare.net/BaiduIndonesia/q1-2015-indonesia-mobile-
data-report-based-on-mobomarket-users-data-research. Apr. 13, 2015
[July 2nd, 2015].

[3] Statista, “Mobile gaming revenue in the United States from 2013 to
2016 (in billion U.S. dollars),” Internet:
http://www.statista.com/statistics/269831/mobile-gaming-revenue-in-
the-united-states/. [Jul. 2nd, 2015].

[4] IEEE, “829-1983 - IEEE standard for software test documentation,”
Available:
http://faculty.ksu.edu.sa/mohamedbatouche/SWE%20434/IEEE%20Std
%20829%20-%201998.pdf. [Jun. 2nd, 2015].

[5] G. J. Myers, “The art of software testing 2nd edition”, New York: John
Wiley & Sons, 2004.

[6] Unity, “Unity game engine,” Internet: https://unity3d.com. [Jun. 22nd,
2015].

[7] Unity, “Unity Test Tools,” Internet:
https://unity3d.com/learn/tutorials/modules/beginner/live-training-
archive/test-tools. Jul. 24, 2015 [Jun. 1st, 2015].

[8] E. J. Jeong, D. J. Kim, "Definitions, key characteristics, and generations
of mobile games," 2009. Available: http://www.irma-
international.org/viewtitle/26508. [May 11th, 2015].

[9] J. Gregory, “Game engine architecture,” Massachusetts: Wellesley,
2009.

[10] R. B. Charles, P. Schultz, T. Langdell, “Game testing all in one,”
Boston: Thomson Course Technology, 2005.

[11] J. Gibson, Introduction to Game Design, Prototyping, and Development,
Addison-Wesley, 2015.

[12] Playtest Cloud, “Mobile game usability testing,” Internet:
https://www.playtestcloud.com. [Jun. 1st, 2015].

[13] Playtestix, “Playtestix,” Available:
http://playtestix.com/files/2e83d55a81eaa64bc71379f802853d79.pdf.
[Jun. 1st, 2015].

[14] V. Helppi, “Mobile game testing – part #1: the importance and
difference from app testing”, 2014. Internet:
http://testdroid.com/tech/mobile-game-testing-the-importance-and-
difference-from-app-testing. [Jun. 9th, 2015].

[15] Unity, “Unity,” Internet: https://unity3d.com/unity/multiplatform. [May
11th, 2015].

[16] Unity, “Unity Test Tools,” Internet:
https://www.assetstore.unity3d.com/en/#!/content/13802. Dec. 18, 2013
[May 11th, 2015].

[17] Github, “Angry Bird clone,” Internet:
https://github.com/dgkanatsios/AngryBirdClone. Jun. 19, 2015 [May
12th, 2015].

