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ABSTRACT
Metamorphic Testing (MT) aims to alleviate the oracle prob-
lem. In MT, testers define metamorphic relations (MRs)
which are used to generate new test cases (referred to as
follow-up test cases) from the available test cases (referred
to as source test cases). Both source and follow-up test cases
are executed and their outputs are verified against the rele-
vant MRs, of which any violation implies that the software
under test is faulty. So far, the research on the effectiveness
of MT has been focused on the selection of better MRs (that
is, MRs that are more likely to be violated). In addition to
MR selection, the source and follow-up test cases may also
affect the effectiveness of MT. Since follow-up test cases are
defined by the source test cases and MRs, selection of source
test cases will then affect the effectiveness of MT. However,
in existing MT studies, random testing is commonly adopted
as the test case selection strategy for source test cases. This
study aims to investigate the impact of source test cases
on the effectiveness of MT. Since Adaptive Random Testing
(ART) has been developed as an enhancement to Random
Testing (RT), this study will focus on comparing the perfor-
mance of RT and ART as source test case selection strategies
on the effectiveness of MT. Experiment results show that
ART outperforms RT on enhancing the effectiveness of MT.
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1. INTRODUCTION
A test oracle is a mechanism to verify the correctness of

computed outputs. However, situations exist where oracles
may be unavailable or practically inapplicable. For exam-
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ple, a heuristic method does not guarantee to always deliver
the most optimal solution. Hence, it is very difficult to ver-
ify the correctness of the output of a program implementing
a heuristic [1]. This situation is known as an oracle prob-
lem. Metamorphic Testing (MT) is one of several testing
strategies to alleviate the oracle problem[4]. MT uses some
properties of software under test to define metamorphic re-
lations (MRs). MRs are used to generate new test cases
(referred to as follow-up test cases) from the existing test
cases (referred to as source test cases). Next, the source and
follow-up test case are executed and their outputs are then
verified againts the corresponding MRs. The software under
test can be considered faulty once the MRs are violated.

Obviously, the effectiveness of MT in revealing faults de-
pends on the quality of MRs. There have been some studies
to investigate the selection of good MRs [7, 23]. In addition
to the quality of MRs, the effectiveness of MT should also
depend on the source test cases. However, Random Test-
ing (RT) is commonly used as the source test case selection
strategy in MT. Since ART has been designed to improve
the performance of Random Testing (RT) [5], we investi-
gate the use of RT and ART as source test case selection
strategies and their impact on the effectiveness of MT.

Section 2 of this paper explains some basic concepts of
Metamorphic Testing and Adaptive Random Testing whereas
Section 3 gives the motivation of this study. Detailed design
of the experimental work is presented in Section 4. Section
5 reports the experiment results and their interpretation.
Conclusion and future work are given in the last Section

2. LITERATURE REVIEW

2.1 Metamorphic Testing
A test oracle is a mechanism that can be used to verify

the correctness of computed outputs of a program [3]. We
encounter a test oracle problem when (i) there is no such
an oracle or (ii) the application of such an oracle becomes
too expensive. To alleviate this problem, Chen et al. [4]
developed the Metamorphic Testing (MT) approach which
has been successfully applied in various application domains
[6, 7, 8, 22]. The key idea of MT is the use of Metamorphic
Relations (MRs) which are identified from the properties of
the software under test. MRs are used to generate follow-
up test cases from the source test cases. Both source and
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follow-up test cases are executed and their outputs are then
verified against the corresponding MRs. Any violation of
MRs implies that the software under test is faulty.

Let us use the search engine function to illustrate the
idea of MT. Suppose P is a program implementing a search
function f which searches websites containing any keywords
specified. The test oracle for this program may be too expen-
sive to apply because it is hard to verify whether P returns
pages of all websites containing any keywords in the input.
However, we know that if S1 is an input and S2 consists of
S1 and other keywords, then the returned pages (O1) for S1

ought to be a subset of the returned pages (O2) for S2. For
example, a user would like to find some detective book ti-
tles using a certain search engine. He/she puts two authors’
names Agatha Christie and Enid Blyton as keywords that is,
S1 = {Agatha Christie, Enid Blyton}. Then, he/she does
a second search with one additional author Shidney Shel-
don that is, S2 = {Agatha Christie, Enid Blyton, Shidney
Sheldon}. The returned pages for the second search (O2) at
least include all returned pages for the first search (O1) or
in other words, O1 ⊂ O2.

As program faults may be sensitive to different MRs, it is
recommended to use more than one MR when applying MT.
A main challenge of MT is to identify effective MRs [21].

Procedure MT Suppose the function f is implemented
by a program P . The procedure of MT consists of the fol-
lowing steps:
1. Identify an MR for f .
2. Generate source test cases I1 using an appropriate test
case selection strategy.
2. Generate follow-up test cases I2 from I1 based on the
MR.
2. Run P using I1 and I2 and get their outputs O1 and O2

correspondingly.
4. Verify I1, I2, O1 and O2 against the MR: if the MR does
not hold, then P can be considered faulty.

The above procedure can be repeated for a group of MRs
for the software under test.

2.2 Adaptive Random Testing
Adaptive Random Testing (ART) is a test case selection

strategy to improve Random Testing (RT)[5]. As faults tend
to cause erroneous behaviour to occur in contiguous regions
of the input doman [11, 12], ART is based on the intuition
that test cases close to each other are more likely to have
similar failure behaviour than test cases further away from
each other. Therefore ART attempts to select test cases
widely spread across the input domain with the aim of find-
ing failure with fewer number of test cases by than RT.

There are many ways to apply the principle of ART. One
of them that has been widely used is Fixed-Size Candidate
Set ART (FSCS-ART). Its first algorithm, which is for test-
ing programs with numeric inputs, uses the Euclidean Dis-
tance to measure the distance between test cases [5]. It
defines two groups of test cases: candidate set and executed
set. The candidate test cases are selected randomly and
then the candidate that is the most distant away from all
executed test cases will be selected as the next test case. For
each candidate, its distances to every executed test case are
calculated and the minimum distant, say dmin is recorded.
A candidate with the largest dmin will be selected as the
next test case. This selection criterion is known as max-min

criterion. If the selected test case does not reveal a failure,
then it is added to the executed set. A new candidate set
is selected again and then the above process of selecting the
next test case is repeated. Testing stops whenever a failure
is detected or testing resources are exhausted. The number
of test cases required to reveal the first failure is known as
F-measure [9]. This is used as the metric to measure the
effectiveness of the technique.

Recently, ART has been used not only to test program
with numeric inputs, but also to test programs with non-
numeric inputs [20]. The category-choices technique [17] is
adopted as the distance measure for non-numeric inputs.
This technique is a specification-based method that identi-
fies key input parameters or operational environment as cat-
egories and all possible disjoint groups of the values (namely
choices) of the categories. The distance between two test
cases is calculated by counting the number of different choices
between them.

Kuo proposed some alternatives to max-min criterion of
ART for testing programs with non-numeric inputs [10]. A
proposed alternative is the max-sum criterion. Instead of
considering the minimum values of the distances between
each candidate and all executed test cases, the accumulated
distances are recorded. The candidate having the largest
accumulated distance is then selected as the next test case.
This approach aims to alleviate the loosing of discriminatory
power of max-min criterion when the number of executed
test cases is large, because the number of categories for a
given program is fixed and is normally not a large number.
Kuo also considered only the n most recently executed test
cases rather than all executed test cases. This approach is
referred to as aging or forgetting approach which was first
introduced by Chan et al. [25]. This approach aims to limit
the number of distance comparison.

3. MOTIVATION
There have been many studies aiming to investigate how

to improve the performance of Metamorphic Testing (MT).
However, they have been focused on the identification of
the Metamorphic Relations (MRs) that are more effective
in revealing failures on the software under test. For the
effectiveness of MRs, some factors such as the difference of
execution paths between source and follow-up test cases [7,
23] and the strength of the MRs to reveal failures compared
to existing test oracles [21] have been investigated.

In fact, in addition to the effectiveness of the MRs, the
source and follow-up test cases also affect the performance
of MT. Since the generation of follow-up test cases is depen-
dant on the source test cases and the corresponding MRs,
the selection of source test cases will affect the effectiveness
of MT. However, in existing MT studies, random testing
(RT) is commonly used as the test case selection strategy for
source test cases. In this study, we aim to investigate the
use of other source test case selection strategies and their
impacts on the effectiveness of MT.

This study chooses Adaptive Random Testing (ART) as
a new source test case selection strategy because ART has
been developed as an enhancement to RT. ART is based
on the intuition that two test cases close to each other are
more likely to trigger the same failure behavior than those
far from each other. Accordingly, ART aims to select test
cases widely spread more than RT and hence is expected to
reveal failure more effective than RT.
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This study attempts to compare the use of RT and ART
as source test case selection strategies for MT. We measure
the effectiveness of MT using the F-measure. As many pre-
vious studies have demonstrated that ART has improved the
effectiveness of RT, it is expected that the source test case
selection using ART can enhance the performance of MT.

The present paper includes some results reported in Barus’
work [2], in which grep is the only software under test. Here,
we use more subject programs.

4. EMPIRICAL STUDY

4.1 Research question
We conducted an empirical study to answer the following

research question: Can the use of ART in the source test
case selection improve the effectiveness of MT?

4.2 Object programs: grep and SIEMENS Pro-
grams

4.2.1 grep

grep is a regular expression program of GNU that searches
a given expression pattern in a given file [24]. It returns the
matching lines in the input file. We chose grep as one of
the object programs in this study as the released versions
are freely accessed and grep has complex enough input file
structure that are still feasible for the automated input gen-
eration purpose. Most faults in grep did not relate to the
regular expression analyzer which is the part that we focus
on this study. However, we found one real fault of grep fault
program that is suitable for our use. As one fault is not
sufficient, we generated 19 mutants using our own tool that
applies two types of mutation operators, namely statement
mutation and operator mutation.

4.2.2 SIEMENS Programs
SIEMENS programs have been widely used as the exper-

imental subjects in software testing [16, 14, 2]. They are
simple text pocessing utilities which were originally assem-
bled by researchers at SIEMENS Corporate Research for
software testing based on control-flow and data-flow test ad-
equacy criteria [14]. We chose some of SIEMENS programs
to be used in this study because of their manageable sizes
and inputs, and their source codes, mutants, and test pools
in SIR [15].

In this paper, we used five of the SIEMENS programs
which are printtokens, printtokens2, schedule, sched-

ule2, and replace. Program printtokens and printto-

kens2 are lexical analysers. Both of them do exactly the
same things and are based on the same specification but im-
plemented differently and independently. These programs
read an input file, and then split each line in the input
file into tokens, identify token categories, and print out all
the tokens and the categories in a specific order. Program
schedule and schedule2 perform priority scheduling. They
receive a list of jobs and some commands of operations as
inputs, and generate outputs of the ordered jobs based on
their priorities. Like printtokens and printtokens2, these
two programs also share similar basic specification; however
schedule is non-preemptive while schedule2 is preemptive.
The last program, replace, is a command-line utility which
takes three inputs: a search string, a replacement string,
and an input file. It searches for occurrences of the search

string in the input file, and produces an output file where
each occurrence of the matched string is replaced with the
replacement string. The search string is in a special format
of regular expression and the replacement string is a text
that can include some metacharacters.

4.3 Metamorphic Relations
In this study, we used metamorphic relations (MRs) for

grep that have been defined in [2]. However, we only consid-
ered 6 out of 12 defined MRs because in the previous study
[2], it was found that the remaining MRs were unable to
reveal faults in any of the mutated versions. For the five
SIEMENS programs, we used all MRs defined in [18] where
each consisted of 3 MRs. Following is a list of representative
MRs used in the study, one for each program (due to page
limit, we are not able to list all MRs):

• grep

Changing range character sets: The regular ex-
pression of follow-up test cases are generated from source
test cases by re-arranging the elements in the range
character set randomly (e.g. [1-3] is re-arranged into
[231]). For this MR, the output of follow-up test cases
must be equal to the output of the source test cases.

• printtokens, printtokens2

Changing lower case into upper case: In this MR,
the follow-up test cases are generated by changing all
lower case characters in the source test input file to
upper cases. This operation does not change the num-
ber of tokens in the output of the follow-up test cases.
However output tokens with categories ”keywords” are
changed to categories ”identifier” whilst other cate-
gories remain the same.

• schedule, schedule2

Substituting the block and unblock commands:
In this MR, firstly, the numbers of the command types
of ”blocked”and ”unblocked”needs to be counted. Sup-
pose the difference between these two numbers is n.
Then, follow-up test cases are generated by deleting all
of the commands having the smallest number of these
two types, and add n commands of the other type in
the input file. For example, if there are 5 commands
”blocked” and 2 commands ”unblock” in the input file
of a source test case, then for the corresponding follow-
up test case’s input file, all commands ”unblock”will be
deleted and 3 commands ”blocked” are added. Then,
the number of printed job in output of follow-up test
cases should be the same as that in the source test
cases.

• replace

Bracketing simple characters: In this MR, the
search strings of the follow-up test cases are different to
the search strings of the source test cases whereas the
replacement strings and input files remain the same.
The search string which is in a special format of regu-
lar expression may contain simple characters. In this
MR, to form follow-up test cases, any simple characters
in search strings of source test cases will be enclosed by
a pair of square brackets. As the simple charactes still
have similar meaning after being enclosed by a pair of
square brackets ( e.g. ”a” is equivalent to ”[a]”) then
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the output of follow-up test cases should be the same
as output of the source test cases.

4.4 Variables and measures

4.4.1 Independent variable
The strategy to select source test cases of MT is the in-

dependent variable in this study. Three source test case se-
lection strategies which are ART max-min with aging, ART
max-sum with aging and RT, are included in this empir-
ical study. For ART max-min with aging, ART max-sum
with aging, the size of candidate set is 10. This size has
been demonstrated as the maximum number showing the
effectiveness of the FSCS-ART strategies [5]. For aging ap-
proach, prior relevant study [25] always arbitrarily defines
the size of the executed test cases being considered. In this
study, we propose a fix number which is 10 most recently
executed test cases.

4.4.2 Dependent variable
To answer the research question above, the F-measure is

used as a metric to evaluate the failure detection effective-
ness of the three source test case selection strategies. This
follows the relevant study in Barus’ work [2] which used sim-
ilar metric due to the nature of the comparison of RT and
ART techniques. The F-measure is defined as the average
number of test cases required to reveal the first failure[19].
A smaller F-measure reflects better failure detection per-
formance. In addition, to better illustrate the performance
improvement of ART over RT, F-ratio, referred to as the
ratio of the F-measure of ART to that of RT, is normally
used. If the value of F-ratio is less then 100%, it implies that
ART outperforms RT in terms of using fewer test cases in
detecting the first failure. Failures are identified whenever
the relevant MRs are violated. For each fault, a thousand
runs were performed to achieve a statistically significant con-
fidence.

4.5 Categories and Choices
Categories and choices used for the object programs are

taken from [20]. Due to the limited available documentation
of the SIEMENS programs, they were derived based on the
behaviour and source code of each program. For grep, the
categories and choices were made based on the available user
documentation, particularly on the part of regular expres-
sion analyzer. Details of the categories and choices for the
object programs can be found in [20].

5. RESULTS
Table 1 - Table 6 give full results of F-ratio of both ART

strategies for grep and the five SIEMENS programs. The
values of ”N/A” in the tables mean that the corresponding
MR was not able to reveal any failures on relevant faulty
version of the programs under test.

Table 7 presents direct pairwise comparisons of the F-
measures of RT, ART max-min with aging, and ART max-
sum with aging for all programs under test. Each cell in table
denotes the number of faulty versions on which the test case
selection strategies in the top row performing better than the
strategies in the most left column. For example, for program
printtokens, the cell in the most right of second row shows
that ART max-sum with aging had a smaller F-measures
than RT on all of 9 faults.

To test the significant level of the difference between the
techniques under study, we conducted non-parametric test,
a Friedman test. We did not use parametric test because
the number of faults for each program was small and their
F-measures were not normally distributed. We used the sig-
nificance level α equal to 0.05 and used Holm-Benferroni
method to evaluate the significant differences. Bold en-
tries in the tables mean the significant differences of perfo-
mance of corresponding compared tehniques. For example,
for replace, ART max-min with aging outperformed RT
significantly on 16 of the 23 faulty versions. However, ART
max-sum with aging outperformed RT on 17 of the 23 faulty
versions but not significantly.

The results show that ART max-min with aging outper-
formed RT significantly on grep, schedule-2, and replace.
ART max-sum with aging outperformed RT significantly on
3 (printtokens, printtokens-2, and schedule-2 ) of the
5 SIEMENS programs. ART max-sum with aging outper-
formed ART max-min with aging significantly on
schedule-2. On the other hand, RT could not significantly
outperform either of the ART techniques on any program.

6. DISCUSSION AND CONCLUSION
From the results given in the previous section, we can see

that the effectiveness of MT can be improved by generating
source test cases using either ART max-sum with aging or
ART max-min with aging. We also found that the use of
ART max-sum with aging is slightly better than ART max-
min with aging in the source test case generation of MT.
In our study, F-measure was used to measure the effective-
ness of test case selection strategies, due to the nature of the
comparison of RT and ART. The F-measure results specifi-
cally showed that by using ART to select source test cases
for MT, fewer test cases were required to detect the first
failure than using RT.

Previous studies of MT merely investigate the improve-
ment of MT by focussing on the quality of the MRs selected.
However, this study has shown that the source test case se-
lection could also give impact on the effectiveness of MT.
In most previous studies, the source test case generation for
MT was normally conducted based on RT. In this study, we
used ART max-min with aging and ART max-sum with ag-
ing to select source test cases for MT. The experiment results
have shown that the use of ART ART max-min with aging
and ART max-sum with aging were also able to improve the
effectiveness of MT.
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Table 1: F-ratio of MT with ART max-min with aging and ART max-sum with aging for grep

version ART max-min with aging ART max-sum with aging
MR1 MR2 MR3 MR4 MR5 MR6 MR1 MR2 MR3 MR4 MR5 MR6

v1 N/A 39.08% N/A 85.64% 270.74% N/A N/A 107.93% N/A 149.78% 351.45% N/A
v2 59.55% N/A N/A N/A 57.22% 197.38% 108.64% N/A N/A N/A 115.62% 197.09%
v3 N/A N/A N/A 79.97% 73.14% N/A N/A N/A N/A 154.68% 101.04% N/A
v4 48.85% 122.36% N/A 139.98% 54.08% 234.48% 108.15% 155.88% N/A 156.52% 97.53% 218.02%
v5 70.29% 39.44% N/A 73.27% 84.78% 241.97% 110.64% 107.19% N/A 134.19% 91.30% 228.65%
v6 N/A 64.26% N/A 66.78% N/A 131.42% N/A 128.08% N/A 118.98% N/A 133.20%
v7 54.83% 94.90% N/A 82.13% 37.22% 103.35% 97.93% 91.32% N/A 129.82% 97.68% 168.34%
v8 N/A 45.02% N/A N/A N/A 93.74% N/A 91.65% N/A N/A N/A 100.10%
v9 N/A N/A N/A 76.68% 40.24% 55.50% N/A N/A N/A 136.37% 100.09% 101.29%
v10 N/A 37.18% N/A 71.05% 51.24% N/A N/A 103.12% N/A 131.54% 95.04% N/A
v11 62.38% N/A N/A 60.53% 76.03% 104.55% 112.69% N/A N/A 101.12% 97.86% 99.44%
v12 58.95% N/A N/A 57.96% 37.26% 92.76% 92.40% N/A N/A 102.28% 103.36% 88.47%
v13 64.33% N/A N/A N/A N/A 97.73% 114.87% N/A N/A N/A N/A 167.67%
v14 N/A 55.26% N/A 58.90% 28.57% 77.88% N/A 110.16% N/A 121.75% 28.57% 84.88%
v15 56.09% N/A N/A 59.28% 25.06% 77.42% 93.65% N/A N/A 103.24% 71.80% 64.63%
v16 111.04% 105.19% 127.88% 58.63% 84.92% 91.38% 103.42% 141.32% 127.53% 88.03% 100.77% 98.99%
v17 59.97% N/A N/A N/A 62.54% N/A 96.81% N/A N/A N/A 90.86% N/A
v18 66.34% 42.09% N/A 63.47% 37.80% N/A 109.21% 97.49% N/A 115.74% 93.13% N/A
v19 N/A N/A N/A 51.76% 50.70% 91.19% N/A N/A N/A 108.85% 87.19% 94.48%
v20 57.24% N/A N/A 59.65% N/A N/A 76.94% N/A N/A 86.22% N/A N/A

Table 2: F-ratio of MT with ART max-min with ag-
ing and ART max-sum with aging for printtokens

version ART max-min with aging ART max-sum with aging
MR1 MR2 MR3 MR1 MR2 MR3

v1 N/A N/A 50.10% N/A N/A 45.04%
v2 N/A N/A 51.40% N/A N/A 45.94%
v3 N/A N/A 50.12% N/A N/A 44.94%
v4 N/A N/A 50.06% N/A N/A 45.10%
v5 N/A 13.74% 58.95% N/A 12.03% 51.46%
v6 51.40% N/A 50.33% 46.17% N/A 45.14%
v7 N/A N/A 50.31% N/A N/A 45.30%

Table 3: F-ratio of MT with ART max-min with ag-
ing and ART max-sum with aging for printtokens-2

version ART max-min with aging ART max-sum with aging
MR1 MR2 MR3 MR1 MR2 MR3

v1 116.22% 131.52% 89.63% 92.20% 159.54% 72.13%
v2 135.73% 128.45% 89.18% 124.58% 145.38% 71.54%
v3 53.44% 71.10% 89.14% 35.96% 88.24% 71.62%
v4 25.68% 96.55% 85.23% 12.36% 110.38% 71.72%
v5 35.81% 68.23% 89.40% 21.79% 87.96% 72.25%
v6 101.63% 67.56% 89.39% 112.32% 86.37% 71.50%
v7 119.49% 107.36% 86.07% 105.86% 120.16% 69.86%
v8 42.36% 69.60% 89.46% 34.71% 87.41% 71.43%
v9 N/A 106.47% 90.54% N/A 148.19% 73.40%
v10 N/A 68.87% 75.47% N/A 86.57% 68.24%

Table 4: F-ratio of MT with ART max-min with ag-
ing and ART max-sum with aging for schedule

version ART max-min with aging ART max-sum with aging
MR1 MR2 MR3 MR1 MR2 MR3

v1 41.82% N/A 101.34% 39.40% N/A 154.16%
v2 N/A N/A 100.86% N/A N/A 156.83%
v3 N/A N/A 103.10% N/A N/A 153.70%
v4 N/A N/A 103.78% N/A N/A 154.29%
v5 N/A N/A 28.48% N/A N/A 41.81%
v6 42.06% N/A 102.66% 39.74% N/A 156.53%
v7 N/A N/A 103.18% N/A N/A 156.74%
v8 N/A N/A 106.29% N/A N/A 155.68%
v9 N/A N/A N/A N/A N/A N/A

Table 5: F-ratio of MT with ART max-min with ag-
ing and ART max-sum with aging for schedule-2

version ART max-min with aging ART max-sum with aging
MR1 MR2 MR3 MR1 MR2 MR3

v1 43.07% 134.21% 87.52% 24.40% 70.89% 49.29%
v2 59.17% N/A 52.48% 36.09% N/A 57.23%
v3 42.62% N/A 36.98% 24.67% N/A 27.15%
v4 43.72% N/A 37.70% 24.20% N/A 26.66%
v5 43.35% N/A 52.72% 24.24% N/A 36.43%
v6 42.74% N/A 37.85% 24.38% N/A 26.44%
v7 59.03% N/A 54.35% 36.26% N/A 57.27%
v8 N/A N/A 37.74% N/A N/A 26.84%
v9 43.92% N/A 37.62% 24.50% N/A 26.51%
v10 42.95% N/A 37.89% 24.34% N/A 26.58%
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Table 6: F-ratio of MT with ART max-min with aging and ART max-sum with aging for replace

version ART max-min with aging ART max-sum with aging
MR1 MR2 MR3 MR1 MR2 MR3

v1 N/A 76.76% 81.87% N/A 76.76% 139.80%
v2 N/A N/A 33.71% N/A N/A 45.58%
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